You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
8.4 KiB
262 lines
8.4 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import cv2 |
|
import time |
|
import numpy as np |
|
from .visualization import plot_tracking_dict, plot_tracking |
|
|
|
__all__ = [ |
|
'MOTTimer', |
|
'Detection', |
|
'write_mot_results', |
|
'save_vis_results', |
|
'load_det_results', |
|
'preprocess_reid', |
|
'get_crops', |
|
'clip_box', |
|
'scale_coords', |
|
] |
|
|
|
|
|
class MOTTimer(object): |
|
""" |
|
This class used to compute and print the current FPS while evaling. |
|
""" |
|
|
|
def __init__(self): |
|
self.total_time = 0. |
|
self.calls = 0 |
|
self.start_time = 0. |
|
self.diff = 0. |
|
self.average_time = 0. |
|
self.duration = 0. |
|
|
|
def tic(self): |
|
# using time.time instead of time.clock because time time.clock |
|
# does not normalize for multithreading |
|
self.start_time = time.time() |
|
|
|
def toc(self, average=True): |
|
self.diff = time.time() - self.start_time |
|
self.total_time += self.diff |
|
self.calls += 1 |
|
self.average_time = self.total_time / self.calls |
|
if average: |
|
self.duration = self.average_time |
|
else: |
|
self.duration = self.diff |
|
return self.duration |
|
|
|
def clear(self): |
|
self.total_time = 0. |
|
self.calls = 0 |
|
self.start_time = 0. |
|
self.diff = 0. |
|
self.average_time = 0. |
|
self.duration = 0. |
|
|
|
|
|
class Detection(object): |
|
""" |
|
This class represents a bounding box detection in a single image. |
|
|
|
Args: |
|
tlwh (Tensor): Bounding box in format `(top left x, top left y, |
|
width, height)`. |
|
score (Tensor): Bounding box confidence score. |
|
feature (Tensor): A feature vector that describes the object |
|
contained in this image. |
|
cls_id (Tensor): Bounding box category id. |
|
""" |
|
|
|
def __init__(self, tlwh, score, feature, cls_id): |
|
self.tlwh = np.asarray(tlwh, dtype=np.float32) |
|
self.score = float(score) |
|
self.feature = np.asarray(feature, dtype=np.float32) |
|
self.cls_id = int(cls_id) |
|
|
|
def to_tlbr(self): |
|
""" |
|
Convert bounding box to format `(min x, min y, max x, max y)`, i.e., |
|
`(top left, bottom right)`. |
|
""" |
|
ret = self.tlwh.copy() |
|
ret[2:] += ret[:2] |
|
return ret |
|
|
|
def to_xyah(self): |
|
""" |
|
Convert bounding box to format `(center x, center y, aspect ratio, |
|
height)`, where the aspect ratio is `width / height`. |
|
""" |
|
ret = self.tlwh.copy() |
|
ret[:2] += ret[2:] / 2 |
|
ret[2] /= ret[3] |
|
return ret |
|
|
|
|
|
def write_mot_results(filename, results, data_type='mot', num_classes=1): |
|
# support single and multi classes |
|
if data_type in ['mot', 'mcmot']: |
|
save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n' |
|
elif data_type == 'kitti': |
|
save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' |
|
else: |
|
raise ValueError(data_type) |
|
|
|
f = open(filename, 'w') |
|
for cls_id in range(num_classes): |
|
for frame_id, tlwhs, tscores, track_ids in results[cls_id]: |
|
if data_type == 'kitti': |
|
frame_id -= 1 |
|
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): |
|
if track_id < 0: continue |
|
if data_type == 'mot': |
|
cls_id = -1 |
|
|
|
x1, y1, w, h = tlwh |
|
x2, y2 = x1 + w, y1 + h |
|
line = save_format.format( |
|
frame=frame_id, |
|
id=track_id, |
|
x1=x1, |
|
y1=y1, |
|
x2=x2, |
|
y2=y2, |
|
w=w, |
|
h=h, |
|
score=score, |
|
cls_id=cls_id) |
|
f.write(line) |
|
print('MOT results save in {}'.format(filename)) |
|
|
|
|
|
def save_vis_results(data, |
|
frame_id, |
|
online_ids, |
|
online_tlwhs, |
|
online_scores, |
|
average_time, |
|
show_image, |
|
save_dir, |
|
num_classes=1): |
|
if show_image or save_dir is not None: |
|
assert 'ori_image' in data |
|
img0 = data['ori_image'].numpy()[0] |
|
if online_ids is None: |
|
online_im = img0 |
|
else: |
|
if isinstance(online_tlwhs, dict): |
|
online_im = plot_tracking_dict( |
|
img0, |
|
num_classes, |
|
online_tlwhs, |
|
online_ids, |
|
online_scores, |
|
frame_id=frame_id, |
|
fps=1. / average_time) |
|
else: |
|
online_im = plot_tracking( |
|
img0, |
|
online_tlwhs, |
|
online_ids, |
|
online_scores, |
|
frame_id=frame_id, |
|
fps=1. / average_time) |
|
if show_image: |
|
cv2.imshow('online_im', online_im) |
|
if save_dir is not None: |
|
cv2.imwrite( |
|
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) |
|
|
|
|
|
def load_det_results(det_file, num_frames): |
|
assert os.path.exists(det_file) and os.path.isfile(det_file), \ |
|
'{} is not exist or not a file.'.format(det_file) |
|
labels = np.loadtxt(det_file, dtype='float32', delimiter=',') |
|
assert labels.shape[1] == 7, \ |
|
"Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file) |
|
results_list = [] |
|
for frame_i in range(num_frames): |
|
results = {'bbox': [], 'score': [], 'cls_id': []} |
|
lables_with_frame = labels[labels[:, 0] == frame_i + 1] |
|
# each line of lables_with_frame: |
|
# [frame_id],[x0],[y0],[w],[h],[score],[class_id] |
|
for l in lables_with_frame: |
|
results['bbox'].append(l[1:5]) |
|
results['score'].append(l[5:6]) |
|
results['cls_id'].append(l[6:7]) |
|
results_list.append(results) |
|
return results_list |
|
|
|
|
|
def scale_coords(coords, input_shape, im_shape, scale_factor): |
|
# Note: ratio has only one value, scale_factor[0] == scale_factor[1] |
|
# |
|
# This function only used for JDE YOLOv3 or other detectors with |
|
# LetterBoxResize and JDEBBoxPostProcess, coords output from detector had |
|
# not scaled back to the origin image. |
|
|
|
ratio = scale_factor[0] |
|
pad_w = (input_shape[1] - int(im_shape[1])) / 2 |
|
pad_h = (input_shape[0] - int(im_shape[0])) / 2 |
|
coords[:, 0::2] -= pad_w |
|
coords[:, 1::2] -= pad_h |
|
coords[:, 0:4] /= ratio |
|
coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max()) |
|
return coords.round() |
|
|
|
|
|
def clip_box(xyxy, ori_image_shape): |
|
H, W = ori_image_shape |
|
xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=W) |
|
xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=H) |
|
w = xyxy[:, 2:3] - xyxy[:, 0:1] |
|
h = xyxy[:, 3:4] - xyxy[:, 1:2] |
|
mask = np.logical_and(h > 0, w > 0) |
|
keep_idx = np.nonzero(mask) |
|
return xyxy[keep_idx[0]], keep_idx |
|
|
|
|
|
def get_crops(xyxy, ori_img, w, h): |
|
crops = [] |
|
xyxy = xyxy.astype(np.int64) |
|
ori_img = ori_img.numpy() |
|
ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2) # [h,w,3]->[w,h,3] |
|
for i, bbox in enumerate(xyxy): |
|
crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] |
|
crops.append(crop) |
|
crops = preprocess_reid(crops, w, h) |
|
return crops |
|
|
|
|
|
def preprocess_reid(imgs, |
|
w=64, |
|
h=192, |
|
mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]): |
|
im_batch = [] |
|
for img in imgs: |
|
img = cv2.resize(img, (w, h)) |
|
img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255 |
|
img_mean = np.array(mean).reshape((3, 1, 1)) |
|
img_std = np.array(std).reshape((3, 1, 1)) |
|
img -= img_mean |
|
img /= img_std |
|
img = np.expand_dims(img, axis=0) |
|
im_batch.append(img) |
|
im_batch = np.concatenate(im_batch, 0) |
|
return im_batch
|
|
|