You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
8.7 KiB
293 lines
8.7 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
""" |
|
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py |
|
""" |
|
|
|
import numpy as np |
|
from collections import defaultdict |
|
from collections import deque, OrderedDict |
|
from ..matching import jde_matching as matching |
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
__all__ = [ |
|
'TrackState', |
|
'BaseTrack', |
|
'STrack', |
|
'joint_stracks', |
|
'sub_stracks', |
|
'remove_duplicate_stracks', |
|
] |
|
|
|
|
|
class TrackState(object): |
|
New = 0 |
|
Tracked = 1 |
|
Lost = 2 |
|
Removed = 3 |
|
|
|
|
|
@register |
|
@serializable |
|
class BaseTrack(object): |
|
_count_dict = defaultdict(int) # support single class and multi classes |
|
|
|
track_id = 0 |
|
is_activated = False |
|
state = TrackState.New |
|
|
|
history = OrderedDict() |
|
features = [] |
|
curr_feature = None |
|
score = 0 |
|
start_frame = 0 |
|
frame_id = 0 |
|
time_since_update = 0 |
|
|
|
# multi-camera |
|
location = (np.inf, np.inf) |
|
|
|
@property |
|
def end_frame(self): |
|
return self.frame_id |
|
|
|
@staticmethod |
|
def next_id(cls_id): |
|
BaseTrack._count_dict[cls_id] += 1 |
|
return BaseTrack._count_dict[cls_id] |
|
|
|
# @even: reset track id |
|
@staticmethod |
|
def init_count(num_classes): |
|
""" |
|
Initiate _count for all object classes |
|
:param num_classes: |
|
""" |
|
for cls_id in range(num_classes): |
|
BaseTrack._count_dict[cls_id] = 0 |
|
|
|
@staticmethod |
|
def reset_track_count(cls_id): |
|
BaseTrack._count_dict[cls_id] = 0 |
|
|
|
def activate(self, *args): |
|
raise NotImplementedError |
|
|
|
def predict(self): |
|
raise NotImplementedError |
|
|
|
def update(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
def mark_lost(self): |
|
self.state = TrackState.Lost |
|
|
|
def mark_removed(self): |
|
self.state = TrackState.Removed |
|
|
|
|
|
@register |
|
@serializable |
|
class STrack(BaseTrack): |
|
def __init__(self, tlwh, score, cls_id, buff_size=30, temp_feat=None): |
|
# wait activate |
|
self._tlwh = np.asarray(tlwh, dtype=np.float) |
|
self.score = score |
|
self.cls_id = cls_id |
|
self.track_len = 0 |
|
|
|
self.kalman_filter = None |
|
self.mean, self.covariance = None, None |
|
self.is_activated = False |
|
|
|
self.use_reid = True if temp_feat is not None else False |
|
if self.use_reid: |
|
self.smooth_feat = None |
|
self.update_features(temp_feat) |
|
self.features = deque([], maxlen=buff_size) |
|
self.alpha = 0.9 |
|
|
|
def update_features(self, feat): |
|
# L2 normalizing, this function has no use for BYTETracker |
|
feat /= np.linalg.norm(feat) |
|
self.curr_feat = feat |
|
if self.smooth_feat is None: |
|
self.smooth_feat = feat |
|
else: |
|
self.smooth_feat = self.alpha * self.smooth_feat + (1.0 - self.alpha |
|
) * feat |
|
self.features.append(feat) |
|
self.smooth_feat /= np.linalg.norm(self.smooth_feat) |
|
|
|
def predict(self): |
|
mean_state = self.mean.copy() |
|
if self.state != TrackState.Tracked: |
|
mean_state[7] = 0 |
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state, |
|
self.covariance) |
|
|
|
@staticmethod |
|
def multi_predict(tracks, kalman_filter): |
|
if len(tracks) > 0: |
|
multi_mean = np.asarray([track.mean.copy() for track in tracks]) |
|
multi_covariance = np.asarray( |
|
[track.covariance for track in tracks]) |
|
for i, st in enumerate(tracks): |
|
if st.state != TrackState.Tracked: |
|
multi_mean[i][7] = 0 |
|
multi_mean, multi_covariance = kalman_filter.multi_predict( |
|
multi_mean, multi_covariance) |
|
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): |
|
tracks[i].mean = mean |
|
tracks[i].covariance = cov |
|
|
|
def reset_track_id(self): |
|
self.reset_track_count(self.cls_id) |
|
|
|
def activate(self, kalman_filter, frame_id): |
|
"""Start a new track""" |
|
self.kalman_filter = kalman_filter |
|
# update track id for the object class |
|
self.track_id = self.next_id(self.cls_id) |
|
self.mean, self.covariance = self.kalman_filter.initiate( |
|
self.tlwh_to_xyah(self._tlwh)) |
|
|
|
self.track_len = 0 |
|
self.state = TrackState.Tracked # set flag 'tracked' |
|
|
|
if frame_id == 1: # to record the first frame's detection result |
|
self.is_activated = True |
|
|
|
self.frame_id = frame_id |
|
self.start_frame = frame_id |
|
|
|
def re_activate(self, new_track, frame_id, new_id=False): |
|
self.mean, self.covariance = self.kalman_filter.update( |
|
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)) |
|
if self.use_reid: |
|
self.update_features(new_track.curr_feat) |
|
self.track_len = 0 |
|
self.state = TrackState.Tracked |
|
self.is_activated = True |
|
self.frame_id = frame_id |
|
if new_id: # update track id for the object class |
|
self.track_id = self.next_id(self.cls_id) |
|
|
|
def update(self, new_track, frame_id, update_feature=True): |
|
self.frame_id = frame_id |
|
self.track_len += 1 |
|
|
|
new_tlwh = new_track.tlwh |
|
self.mean, self.covariance = self.kalman_filter.update( |
|
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh)) |
|
self.state = TrackState.Tracked # set flag 'tracked' |
|
self.is_activated = True # set flag 'activated' |
|
|
|
self.score = new_track.score |
|
if update_feature and self.use_reid: |
|
self.update_features(new_track.curr_feat) |
|
|
|
@property |
|
def tlwh(self): |
|
"""Get current position in bounding box format `(top left x, top left y, |
|
width, height)`. |
|
""" |
|
if self.mean is None: |
|
return self._tlwh.copy() |
|
|
|
ret = self.mean[:4].copy() |
|
ret[2] *= ret[3] |
|
ret[:2] -= ret[2:] / 2 |
|
return ret |
|
|
|
@property |
|
def tlbr(self): |
|
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e., |
|
`(top left, bottom right)`. |
|
""" |
|
ret = self.tlwh.copy() |
|
ret[2:] += ret[:2] |
|
return ret |
|
|
|
@staticmethod |
|
def tlwh_to_xyah(tlwh): |
|
"""Convert bounding box to format `(center x, center y, aspect ratio, |
|
height)`, where the aspect ratio is `width / height`. |
|
""" |
|
ret = np.asarray(tlwh).copy() |
|
ret[:2] += ret[2:] / 2 |
|
ret[2] /= ret[3] |
|
return ret |
|
|
|
def to_xyah(self): |
|
return self.tlwh_to_xyah(self.tlwh) |
|
|
|
@staticmethod |
|
def tlbr_to_tlwh(tlbr): |
|
ret = np.asarray(tlbr).copy() |
|
ret[2:] -= ret[:2] |
|
return ret |
|
|
|
@staticmethod |
|
def tlwh_to_tlbr(tlwh): |
|
ret = np.asarray(tlwh).copy() |
|
ret[2:] += ret[:2] |
|
return ret |
|
|
|
def __repr__(self): |
|
return 'OT_({}-{})_({}-{})'.format(self.cls_id, self.track_id, |
|
self.start_frame, self.end_frame) |
|
|
|
|
|
def joint_stracks(tlista, tlistb): |
|
exists = {} |
|
res = [] |
|
for t in tlista: |
|
exists[t.track_id] = 1 |
|
res.append(t) |
|
for t in tlistb: |
|
tid = t.track_id |
|
if not exists.get(tid, 0): |
|
exists[tid] = 1 |
|
res.append(t) |
|
return res |
|
|
|
|
|
def sub_stracks(tlista, tlistb): |
|
stracks = {} |
|
for t in tlista: |
|
stracks[t.track_id] = t |
|
for t in tlistb: |
|
tid = t.track_id |
|
if stracks.get(tid, 0): |
|
del stracks[tid] |
|
return list(stracks.values()) |
|
|
|
|
|
def remove_duplicate_stracks(stracksa, stracksb): |
|
pdist = matching.iou_distance(stracksa, stracksb) |
|
pairs = np.where(pdist < 0.15) |
|
dupa, dupb = list(), list() |
|
for p, q in zip(*pairs): |
|
timep = stracksa[p].frame_id - stracksa[p].start_frame |
|
timeq = stracksb[q].frame_id - stracksb[q].start_frame |
|
if timep > timeq: |
|
dupb.append(q) |
|
else: |
|
dupa.append(p) |
|
resa = [t for i, t in enumerate(stracksa) if not i in dupa] |
|
resb = [t for i, t in enumerate(stracksb) if not i in dupb] |
|
return resa, resb
|
|
|