You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.8 KiB
215 lines
7.8 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddlers.models.ppdet.core.workspace import register |
|
from paddle.regularizer import L2Decay |
|
from paddle import ParamAttr |
|
|
|
from ..layers import AnchorGeneratorSSD |
|
|
|
|
|
class SepConvLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
conv_decay=0.): |
|
super(SepConvLayer, self).__init__() |
|
self.dw_conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=padding, |
|
groups=in_channels, |
|
weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)), |
|
bias_attr=False) |
|
|
|
self.bn = nn.BatchNorm2D( |
|
in_channels, |
|
weight_attr=ParamAttr(regularizer=L2Decay(0.)), |
|
bias_attr=ParamAttr(regularizer=L2Decay(0.))) |
|
|
|
self.pw_conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)), |
|
bias_attr=False) |
|
|
|
def forward(self, x): |
|
x = self.dw_conv(x) |
|
x = F.relu6(self.bn(x)) |
|
x = self.pw_conv(x) |
|
return x |
|
|
|
|
|
class SSDExtraHead(nn.Layer): |
|
def __init__(self, |
|
in_channels=256, |
|
out_channels=([256, 512], [256, 512], [128, 256], [128, 256], |
|
[128, 256]), |
|
strides=(2, 2, 2, 1, 1), |
|
paddings=(1, 1, 1, 0, 0)): |
|
super(SSDExtraHead, self).__init__() |
|
self.convs = nn.LayerList() |
|
for out_channel, stride, padding in zip(out_channels, strides, |
|
paddings): |
|
self.convs.append( |
|
self._make_layers(in_channels, out_channel[0], out_channel[1], |
|
stride, padding)) |
|
in_channels = out_channel[-1] |
|
|
|
def _make_layers(self, c_in, c_hidden, c_out, stride_3x3, padding_3x3): |
|
return nn.Sequential( |
|
nn.Conv2D(c_in, c_hidden, 1), |
|
nn.ReLU(), |
|
nn.Conv2D(c_hidden, c_out, 3, stride_3x3, padding_3x3), nn.ReLU()) |
|
|
|
def forward(self, x): |
|
out = [x] |
|
for conv_layer in self.convs: |
|
out.append(conv_layer(out[-1])) |
|
return out |
|
|
|
|
|
@register |
|
class SSDHead(nn.Layer): |
|
""" |
|
SSDHead |
|
|
|
Args: |
|
num_classes (int): Number of classes |
|
in_channels (list): Number of channels per input feature |
|
anchor_generator (dict): Configuration of 'AnchorGeneratorSSD' instance |
|
kernel_size (int): Conv kernel size |
|
padding (int): Conv padding |
|
use_sepconv (bool): Use SepConvLayer if true |
|
conv_decay (float): Conv regularization coeff |
|
loss (object): 'SSDLoss' instance |
|
use_extra_head (bool): If use ResNet34 as baskbone, you should set `use_extra_head`=True |
|
""" |
|
|
|
__shared__ = ['num_classes'] |
|
__inject__ = ['anchor_generator', 'loss'] |
|
|
|
def __init__(self, |
|
num_classes=80, |
|
in_channels=(512, 1024, 512, 256, 256, 256), |
|
anchor_generator=AnchorGeneratorSSD().__dict__, |
|
kernel_size=3, |
|
padding=1, |
|
use_sepconv=False, |
|
conv_decay=0., |
|
loss='SSDLoss', |
|
use_extra_head=False): |
|
super(SSDHead, self).__init__() |
|
# add background class |
|
self.num_classes = num_classes + 1 |
|
self.in_channels = in_channels |
|
self.anchor_generator = anchor_generator |
|
self.loss = loss |
|
self.use_extra_head = use_extra_head |
|
|
|
if self.use_extra_head: |
|
self.ssd_extra_head = SSDExtraHead() |
|
self.in_channels = [256, 512, 512, 256, 256, 256] |
|
|
|
if isinstance(anchor_generator, dict): |
|
self.anchor_generator = AnchorGeneratorSSD(**anchor_generator) |
|
|
|
self.num_priors = self.anchor_generator.num_priors |
|
self.box_convs = [] |
|
self.score_convs = [] |
|
for i, num_prior in enumerate(self.num_priors): |
|
box_conv_name = "boxes{}".format(i) |
|
if not use_sepconv: |
|
box_conv = self.add_sublayer( |
|
box_conv_name, |
|
nn.Conv2D( |
|
in_channels=self.in_channels[i], |
|
out_channels=num_prior * 4, |
|
kernel_size=kernel_size, |
|
padding=padding)) |
|
else: |
|
box_conv = self.add_sublayer( |
|
box_conv_name, |
|
SepConvLayer( |
|
in_channels=self.in_channels[i], |
|
out_channels=num_prior * 4, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
conv_decay=conv_decay)) |
|
self.box_convs.append(box_conv) |
|
|
|
score_conv_name = "scores{}".format(i) |
|
if not use_sepconv: |
|
score_conv = self.add_sublayer( |
|
score_conv_name, |
|
nn.Conv2D( |
|
in_channels=self.in_channels[i], |
|
out_channels=num_prior * self.num_classes, |
|
kernel_size=kernel_size, |
|
padding=padding)) |
|
else: |
|
score_conv = self.add_sublayer( |
|
score_conv_name, |
|
SepConvLayer( |
|
in_channels=self.in_channels[i], |
|
out_channels=num_prior * self.num_classes, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
conv_decay=conv_decay)) |
|
self.score_convs.append(score_conv) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
return {'in_channels': [i.channels for i in input_shape], } |
|
|
|
def forward(self, feats, image, gt_bbox=None, gt_class=None): |
|
if self.use_extra_head: |
|
assert len(feats) == 1, \ |
|
("If you set use_extra_head=True, backbone feature " |
|
"list length should be 1.") |
|
feats = self.ssd_extra_head(feats[0]) |
|
box_preds = [] |
|
cls_scores = [] |
|
for feat, box_conv, score_conv in zip(feats, self.box_convs, |
|
self.score_convs): |
|
box_pred = box_conv(feat) |
|
box_pred = paddle.transpose(box_pred, [0, 2, 3, 1]) |
|
box_pred = paddle.reshape(box_pred, [0, -1, 4]) |
|
box_preds.append(box_pred) |
|
|
|
cls_score = score_conv(feat) |
|
cls_score = paddle.transpose(cls_score, [0, 2, 3, 1]) |
|
cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes]) |
|
cls_scores.append(cls_score) |
|
|
|
prior_boxes = self.anchor_generator(feats, image) |
|
|
|
if self.training: |
|
return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class, |
|
prior_boxes) |
|
else: |
|
return (box_preds, cls_scores), prior_boxes |
|
|
|
def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes): |
|
return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)
|
|
|