You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

537 lines
22 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
import glob
import re
import paddle
import numpy as np
import os.path as osp
from collections import defaultdict
from paddlers.models.ppdet.core.workspace import create
from paddlers.models.ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from paddlers.models.ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
from paddlers.models.ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
from paddlers.models.ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
from paddlers.models.ppdet.metrics import MCMOTMetric
from .callbacks import Callback, ComposeCallback
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['Tracker']
class Tracker(object):
def __init__(self, cfg, mode='eval'):
self.cfg = cfg
assert mode.lower() in ['test', 'eval'], \
"mode should be 'test' or 'eval'"
self.mode = mode.lower()
self.optimizer = None
# build MOT data loader
self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
# build model
self.model = create(cfg.architecture)
self.status = {}
self.start_epoch = 0
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def _init_callbacks(self):
self._callbacks = []
self._compose_callback = None
def _init_metrics(self):
if self.mode in ['test']:
self._metrics = []
return
if self.cfg.metric == 'MOT':
self._metrics = [MOTMetric(), ]
elif self.cfg.metric == 'MCMOT':
self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
elif self.cfg.metric == 'KITTI':
self._metrics = [KITTIMOTMetric(), ]
else:
logger.warning("Metric not support for metric type {}".format(
self.cfg.metric))
self._metrics = []
def _reset_metrics(self):
for metric in self._metrics:
metric.reset()
def register_callbacks(self, callbacks):
callbacks = [h for h in list(callbacks) if h is not None]
for c in callbacks:
assert isinstance(c, Callback), \
"metrics shoule be instances of subclass of Metric"
self._callbacks.extend(callbacks)
self._compose_callback = ComposeCallback(self._callbacks)
def register_metrics(self, metrics):
metrics = [m for m in list(metrics) if m is not None]
for m in metrics:
assert isinstance(m, Metric), \
"metrics shoule be instances of subclass of Metric"
self._metrics.extend(metrics)
def load_weights_jde(self, weights):
load_weight(self.model, weights, self.optimizer)
def load_weights_sde(self, det_weights, reid_weights):
if self.model.detector:
load_weight(self.model.detector, det_weights)
load_weight(self.model.reid, reid_weights)
else:
load_weight(self.model.reid, reid_weights, self.optimizer)
def _eval_seq_jde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)
timer = MOTTimer()
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
results = defaultdict(list) # support single class and multi classes
for step_id, data in enumerate(dataloader):
self.status['step_id'] = step_id
if frame_id % 40 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(
frame_id, 1. / max(1e-5, timer.average_time)))
# forward
timer.tic()
pred_dets, pred_embs = self.model(data)
pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
online_targets_dict = self.model.tracker.update(pred_dets,
pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.cfg.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
# save results
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
online_ids[cls_id]))
timer.toc()
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_sde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
seq_name='',
scaled=False,
det_file='',
draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
use_detector = False if not self.model.detector else True
timer = MOTTimer()
results = defaultdict(list)
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
self.model.reid.eval()
if not use_detector:
dets_list = load_det_results(det_file, len(dataloader))
logger.info('Finish loading detection results file {}.'.format(
det_file))
for step_id, data in enumerate(dataloader):
self.status['step_id'] = step_id
if frame_id % 40 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(
frame_id, 1. / max(1e-5, timer.average_time)))
ori_image = data['ori_image'] # [bs, H, W, 3]
ori_image_shape = data['ori_image'].shape[1:3]
# ori_image_shape: [H, W]
input_shape = data['image'].shape[2:]
# input_shape: [h, w], before data transforms, set in model config
im_shape = data['im_shape'][0].numpy()
# im_shape: [new_h, new_w], after data transforms
scale_factor = data['scale_factor'][0].numpy()
empty_detections = False
# when it has no detected bboxes, will not inference reid model
# and if visualize, use original image instead
# forward
timer.tic()
if not use_detector:
dets = dets_list[frame_id]
bbox_tlwh = np.array(dets['bbox'], dtype='float32')
if bbox_tlwh.shape[0] > 0:
# detector outputs: pred_cls_ids, pred_scores, pred_bboxes
pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
pred_scores = np.array(dets['score'], dtype='float32')
pred_bboxes = np.concatenate(
(bbox_tlwh[:, 0:2],
bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
axis=1)
else:
logger.warning(
'Frame {} has not object, try to modify score threshold.'.
format(frame_id))
empty_detections = True
else:
outs = self.model.detector(data)
outs['bbox'] = outs['bbox'].numpy()
outs['bbox_num'] = outs['bbox_num'].numpy()
if outs['bbox_num'] > 0 and empty_detections == False:
# detector outputs: pred_cls_ids, pred_scores, pred_bboxes
pred_cls_ids = outs['bbox'][:, 0:1]
pred_scores = outs['bbox'][:, 1:2]
if not scaled:
# Note: scaled=False only in JDE YOLOv3 or other detectors
# with LetterBoxResize and JDEBBoxPostProcess.
#
# 'scaled' means whether the coords after detector outputs
# have been scaled back to the original image, set True
# in general detector, set False in JDE YOLOv3.
pred_bboxes = scale_coords(outs['bbox'][:, 2:],
input_shape, im_shape,
scale_factor)
else:
pred_bboxes = outs['bbox'][:, 2:]
else:
logger.warning(
'Frame {} has not detected object, try to modify score threshold.'.
format(frame_id))
empty_detections = True
if not empty_detections:
pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
if len(keep_idx[0]) == 0:
logger.warning(
'Frame {} has not detected object left after clip_box.'.
format(frame_id))
empty_detections = True
if empty_detections:
timer.toc()
# if visualize, use original image instead
online_ids, online_tlwhs, online_scores = None, None, None
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes)
frame_id += 1
# thus will not inference reid model
continue
pred_scores = pred_scores[keep_idx[0]]
pred_cls_ids = pred_cls_ids[keep_idx[0]]
pred_tlwhs = np.concatenate(
(pred_xyxys[:, 0:2],
pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
axis=1)
pred_dets = np.concatenate(
(pred_tlwhs, pred_scores, pred_cls_ids), axis=1)
tracker = self.model.tracker
crops = get_crops(
pred_xyxys,
ori_image,
w=tracker.input_size[0],
h=tracker.input_size[1])
crops = paddle.to_tensor(crops)
data.update({'crops': crops})
pred_embs = self.model(data).numpy()
tracker.predict()
online_targets = tracker.update(pred_dets, pred_embs)
online_tlwhs, online_scores, online_ids = [], [], []
for t in online_targets:
if not t.is_confirmed() or t.time_since_update > 1:
continue
tlwh = t.to_tlwh()
tscore = t.score
tid = t.track_id
if tscore < draw_threshold: continue
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs.append(tlwh)
online_scores.append(tscore)
online_ids.append(tid)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def mot_evaluate(self,
data_root,
seqs,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=False,
show_image=False,
scaled=False,
det_results_dir=''):
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in ['mot', 'mcmot', 'kitti'], \
"data_type should be 'mot', 'mcmot' or 'kitti'"
assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
"model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"
# run tracking
n_frame = 0
timer_avgs, timer_calls = [], []
for seq in seqs:
infer_dir = os.path.join(data_root, seq)
if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
logger.warning("Seq {} error, {} has no images.".format(
seq, infer_dir))
continue
if os.path.exists(os.path.join(infer_dir, 'img1')):
infer_dir = os.path.join(infer_dir, 'img1')
frame_rate = 30
seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
if os.path.exists(seqinfo):
meta_info = open(seqinfo).read()
frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
meta_info.find('\nseqLength')])
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
logger.info('start seq: {}'.format(seq))
self.dataset.set_images(self.get_infer_images(infer_dir))
dataloader = create('EvalMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
with paddle.no_grad():
if model_type in ['JDE', 'FairMOT']:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
elif model_type in ['DeepSORT']:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
seq_name=seq,
scaled=scaled,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)))
else:
raise ValueError(model_type)
write_mot_results(result_filename, results, data_type,
self.cfg.num_classes)
n_frame += nf
timer_avgs.append(ta)
timer_calls.append(tc)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}.'.format(output_video_path))
logger.info('Evaluate seq: {}'.format(seq))
# update metrics
for metric in self._metrics:
metric.update(data_root, seq, data_type, result_root,
result_filename)
timer_avgs = np.asarray(timer_avgs)
timer_calls = np.asarray(timer_calls)
all_time = np.dot(timer_avgs, timer_calls)
avg_time = all_time / np.sum(timer_calls)
logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
all_time, 1.0 / avg_time))
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
# reset metric states for metric may performed multiple times
self._reset_metrics()
def get_infer_images(self, infer_dir):
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
images = set()
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
images.sort()
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
def mot_predict_seq(self,
video_file,
frame_rate,
image_dir,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=True,
show_image=False,
scaled=False,
det_results_dir='',
draw_threshold=0.5):
assert video_file is not None or image_dir is not None, \
"--video_file or --image_dir should be set."
assert video_file is None or os.path.isfile(video_file), \
"{} is not a file".format(video_file)
assert image_dir is None or os.path.isdir(image_dir), \
"{} is not a directory".format(image_dir)
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in ['mot', 'mcmot', 'kitti'], \
"data_type should be 'mot', 'mcmot' or 'kitti'"
assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
"model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"
# run tracking
if video_file:
seq = video_file.split('/')[-1].split('.')[0]
self.dataset.set_video(video_file, frame_rate)
logger.info('Starting tracking video {}'.format(video_file))
elif image_dir:
seq = image_dir.split('/')[-1].split('.')[0]
if os.path.exists(os.path.join(image_dir, 'img1')):
image_dir = os.path.join(image_dir, 'img1')
images = [
'{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
]
images.sort()
self.dataset.set_images(images)
logger.info('Starting tracking folder {}, found {} images'.format(
image_dir, len(images)))
else:
raise ValueError('--video_file or --image_dir should be set.')
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
dataloader = create('TestMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
if frame_rate == -1:
frame_rate = self.dataset.frame_rate
with paddle.no_grad():
if model_type in ['JDE', 'FairMOT']:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
draw_threshold=draw_threshold)
elif model_type in ['DeepSORT']:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
seq_name=seq,
scaled=scaled,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)),
draw_threshold=draw_threshold)
else:
raise ValueError(model_type)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}'.format(output_video_path))
write_mot_results(result_filename, results, data_type,
self.cfg.num_classes)