You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

154 lines
6.6 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from enum import IntEnum
import os.path as osp
from .base import BaseDataset
from paddlers.utils import logging, get_encoding, norm_path, is_pic
class CDDataset(BaseDataset):
"""
读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。
Args:
data_dir (str): 数据集所在的目录路径。
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路径)。当`with_seg_labels`为
False(默认设置)时,文件中每一行应依次包含第一时相影像、第二时相影像以及变化检测标签的路径;当`with_seg_labels`为True时,
文件中每一行应依次包含第一时相影像、第二时相影像、变化检测标签、第一时相建筑物标签以及第二时相建筑物标签的路径。
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。
transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
一半。
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
with_seg_labels (bool, optional): 数据集中是否包含两个时相的语义分割标签。默认为False。
binarize_labels (bool, optional): 是否对数据集中的标签进行二值化操作。默认为False。
"""
def __init__(self,
data_dir,
file_list,
label_list=None,
transforms=None,
num_workers='auto',
shuffle=False,
with_seg_labels=False,
binarize_labels=False):
super(CDDataset, self).__init__(data_dir, label_list, transforms,
num_workers, shuffle)
DELIMETER = ' '
# TODO: batch padding
self.batch_transforms = None
self.file_list = list()
self.labels = list()
self.with_seg_labels = with_seg_labels
if self.with_seg_labels:
num_items = 5 # RGB1, RGB2, CD, Seg1, Seg2
else:
num_items = 3 # RGB1, RGB2, CD
self.binarize_labels = binarize_labels
# TODO:非None时,让用户跳转数据集分析生成label_list
# 不要在此处分析label file
if label_list is not None:
with open(label_list, encoding=get_encoding(label_list)) as f:
for line in f:
item = line.strip()
self.labels.append(item)
with open(file_list, encoding=get_encoding(file_list)) as f:
for line in f:
items = line.strip().split(DELIMETER)
if len(items) != num_items:
raise Exception(
"Line[{}] in file_list[{}] has an incorrect number of file paths.".
format(line.strip(), file_list))
items = list(map(norm_path, items))
full_path_im_t1 = osp.join(data_dir, items[0])
full_path_im_t2 = osp.join(data_dir, items[1])
full_path_label = osp.join(data_dir, items[2])
if not all(
map(is_pic, (full_path_im_t1, full_path_im_t2,
full_path_label))):
continue
if not osp.exists(full_path_im_t1):
raise IOError('Image file {} does not exist!'.format(
full_path_im_t1))
if not osp.exists(full_path_im_t2):
raise IOError('Image file {} does not exist!'.format(
full_path_im_t2))
if not osp.exists(full_path_label):
raise IOError('Label file {} does not exist!'.format(
full_path_label))
if with_seg_labels:
full_path_seg_label_t1 = osp.join(data_dir, items[3])
full_path_seg_label_t2 = osp.join(data_dir, items[4])
if not osp.exists(full_path_seg_label_t1):
raise IOError('Label file {} does not exist!'.format(
full_path_seg_label_t1))
if not osp.exists(full_path_seg_label_t2):
raise IOError('Label file {} does not exist!'.format(
full_path_seg_label_t2))
item_dict = dict(
image_t1=full_path_im_t1,
image_t2=full_path_im_t2,
mask=full_path_label)
if with_seg_labels:
item_dict['aux_masks'] = [
full_path_seg_label_t1, full_path_seg_label_t2
]
self.file_list.append(item_dict)
self.num_samples = len(self.file_list)
logging.info("{} samples in file {}".format(
len(self.file_list), file_list))
def __getitem__(self, idx):
sample = copy.deepcopy(self.file_list[idx])
sample = self.transforms.apply_transforms(sample)
if self.binarize_labels:
# Requires 'mask' to exist
sample['mask'] = self._binarize(sample['mask'])
if 'aux_masks' in sample:
sample['aux_masks'] = list(
map(self._binarize, sample['aux_masks']))
outputs = self.transforms.arrange_outputs(sample)
return outputs
def __len__(self):
return len(self.file_list)
def _binarize(self, mask, threshold=127):
return (mask > threshold).astype('int64')
class MaskType(IntEnum):
"""Enumeration of the mask types used in the change detection task."""
CD = 0
SEG_T1 = 1
SEG_T2 = 2