You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
6.6 KiB
154 lines
6.6 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import copy |
|
from enum import IntEnum |
|
import os.path as osp |
|
|
|
from .base import BaseDataset |
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic |
|
|
|
|
|
class CDDataset(BaseDataset): |
|
""" |
|
读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。 |
|
|
|
Args: |
|
data_dir (str): 数据集所在的目录路径。 |
|
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路径)。当`with_seg_labels`为 |
|
False(默认设置)时,文件中每一行应依次包含第一时相影像、第二时相影像以及变化检测标签的路径;当`with_seg_labels`为True时, |
|
文件中每一行应依次包含第一时相影像、第二时相影像、变化检测标签、第一时相建筑物标签以及第二时相建筑物标签的路径。 |
|
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。 |
|
transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。 |
|
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 |
|
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的 |
|
一半。 |
|
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 |
|
with_seg_labels (bool, optional): 数据集中是否包含两个时相的语义分割标签。默认为False。 |
|
binarize_labels (bool, optional): 是否对数据集中的标签进行二值化操作。默认为False。 |
|
""" |
|
|
|
def __init__(self, |
|
data_dir, |
|
file_list, |
|
label_list=None, |
|
transforms=None, |
|
num_workers='auto', |
|
shuffle=False, |
|
with_seg_labels=False, |
|
binarize_labels=False): |
|
super(CDDataset, self).__init__(data_dir, label_list, transforms, |
|
num_workers, shuffle) |
|
|
|
DELIMETER = ' ' |
|
|
|
# TODO: batch padding |
|
self.batch_transforms = None |
|
self.file_list = list() |
|
self.labels = list() |
|
self.with_seg_labels = with_seg_labels |
|
if self.with_seg_labels: |
|
num_items = 5 # RGB1, RGB2, CD, Seg1, Seg2 |
|
else: |
|
num_items = 3 # RGB1, RGB2, CD |
|
self.binarize_labels = binarize_labels |
|
|
|
# TODO:非None时,让用户跳转数据集分析生成label_list |
|
# 不要在此处分析label file |
|
if label_list is not None: |
|
with open(label_list, encoding=get_encoding(label_list)) as f: |
|
for line in f: |
|
item = line.strip() |
|
self.labels.append(item) |
|
|
|
with open(file_list, encoding=get_encoding(file_list)) as f: |
|
for line in f: |
|
items = line.strip().split(DELIMETER) |
|
|
|
if len(items) != num_items: |
|
raise Exception( |
|
"Line[{}] in file_list[{}] has an incorrect number of file paths.". |
|
format(line.strip(), file_list)) |
|
|
|
items = list(map(norm_path, items)) |
|
|
|
full_path_im_t1 = osp.join(data_dir, items[0]) |
|
full_path_im_t2 = osp.join(data_dir, items[1]) |
|
full_path_label = osp.join(data_dir, items[2]) |
|
if not all( |
|
map(is_pic, (full_path_im_t1, full_path_im_t2, |
|
full_path_label))): |
|
continue |
|
if not osp.exists(full_path_im_t1): |
|
raise IOError('Image file {} does not exist!'.format( |
|
full_path_im_t1)) |
|
if not osp.exists(full_path_im_t2): |
|
raise IOError('Image file {} does not exist!'.format( |
|
full_path_im_t2)) |
|
if not osp.exists(full_path_label): |
|
raise IOError('Label file {} does not exist!'.format( |
|
full_path_label)) |
|
|
|
if with_seg_labels: |
|
full_path_seg_label_t1 = osp.join(data_dir, items[3]) |
|
full_path_seg_label_t2 = osp.join(data_dir, items[4]) |
|
if not osp.exists(full_path_seg_label_t1): |
|
raise IOError('Label file {} does not exist!'.format( |
|
full_path_seg_label_t1)) |
|
if not osp.exists(full_path_seg_label_t2): |
|
raise IOError('Label file {} does not exist!'.format( |
|
full_path_seg_label_t2)) |
|
|
|
item_dict = dict( |
|
image_t1=full_path_im_t1, |
|
image_t2=full_path_im_t2, |
|
mask=full_path_label) |
|
if with_seg_labels: |
|
item_dict['aux_masks'] = [ |
|
full_path_seg_label_t1, full_path_seg_label_t2 |
|
] |
|
|
|
self.file_list.append(item_dict) |
|
|
|
self.num_samples = len(self.file_list) |
|
logging.info("{} samples in file {}".format( |
|
len(self.file_list), file_list)) |
|
|
|
def __getitem__(self, idx): |
|
sample = copy.deepcopy(self.file_list[idx]) |
|
sample = self.transforms.apply_transforms(sample) |
|
|
|
if self.binarize_labels: |
|
# Requires 'mask' to exist |
|
sample['mask'] = self._binarize(sample['mask']) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(self._binarize, sample['aux_masks'])) |
|
|
|
outputs = self.transforms.arrange_outputs(sample) |
|
|
|
return outputs |
|
|
|
def __len__(self): |
|
return len(self.file_list) |
|
|
|
def _binarize(self, mask, threshold=127): |
|
return (mask > threshold).astype('int64') |
|
|
|
|
|
class MaskType(IntEnum): |
|
"""Enumeration of the mask types used in the change detection task.""" |
|
CD = 0 |
|
SEG_T1 = 1 |
|
SEG_T2 = 2
|
|
|