You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

307 lines
11 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
class TopkAcc(nn.Layer):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
metric_dict = dict()
for k in self.topk:
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
x, label, k=k)
return metric_dict
class mAP(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
num_rel = paddle.sum(equal_flag, axis=1)
num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
num_rel_index = paddle.nonzero(num_rel.astype("int"))
num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
acc_sum = paddle.cumsum(equal_flag, axis=1)
div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
precision = paddle.divide(acc_sum, div)
#calc map
precision_mask = paddle.multiply(equal_flag, precision)
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag, axis=1)
metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
return metric_dict
class mINP(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
num_rel = paddle.sum(equal_flag, axis=1)
num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
num_rel_index = paddle.nonzero(num_rel.astype("int"))
num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
#do accumulative sum
div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
minus = paddle.divide(equal_flag, div)
auxilary = paddle.subtract(equal_flag, minus)
hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
mINP = paddle.mean(all_INP)
metric_dict["mINP"] = mINP.numpy()[0]
return metric_dict
class Recallk(nn.Layer):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
real_query_num = paddle.sum(equal_flag, axis=1)
real_query_num = paddle.sum(
paddle.greater_than(real_query_num, paddle.to_tensor(0.)).astype(
"float32"))
acc_sum = paddle.cumsum(equal_flag, axis=1)
mask = paddle.greater_than(acc_sum,
paddle.to_tensor(0.)).astype("float32")
all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
for k in self.topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
return metric_dict
class Precisionk(nn.Layer):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
Ns = paddle.arange(gallery_img_id.shape[0]) + 1
equal_flag_cumsum = paddle.cumsum(equal_flag, axis=1)
Precision_at_k = (paddle.mean(equal_flag_cumsum, axis=0) / Ns).numpy()
for k in self.topk:
metric_dict["precision@{}".format(k)] = Precision_at_k[k - 1]
return metric_dict
class DistillationTopkAcc(TopkAcc):
def __init__(self, model_key, feature_key=None, topk=(1, 5)):
super().__init__(topk=topk)
self.model_key = model_key
self.feature_key = feature_key
def forward(self, x, label):
if isinstance(x, dict):
x = x[self.model_key]
if self.feature_key is not None:
x = x[self.feature_key]
return super().forward(x, label)
class GoogLeNetTopkAcc(TopkAcc):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
return super().forward(x[0], label)
class MutiLabelMetric(object):
def __init__(self):
pass
def _multi_hot_encode(self, logits, threshold=0.5):
return binarize(logits, threshold=threshold)
def __call__(self, output):
output = F.sigmoid(output)
preds = self._multi_hot_encode(logits=output.numpy(), threshold=0.5)
return preds
class HammingDistance(MutiLabelMetric):
"""
Soft metric based label for multilabel classification
Returns:
The smaller the return value is, the better model is.
"""
def __init__(self):
super().__init__()
def __call__(self, output, target):
preds = super().__call__(output)
metric_dict = dict()
metric_dict["HammingDistance"] = paddle.to_tensor(
hamming_loss(target, preds))
return metric_dict
class AccuracyScore(MutiLabelMetric):
"""
Hard metric for multilabel classification
Args:
base: ["sample", "label"], default="sample"
if "sample", return metric score based sample,
if "label", return metric score based label.
Returns:
accuracy:
"""
def __init__(self, base="label"):
super().__init__()
assert base in ["sample", "label"], 'must be one of ["sample", "label"]'
self.base = base
def __call__(self, output, target):
preds = super().__call__(output)
metric_dict = dict()
if self.base == "sample":
accuracy = accuracy_metric(target, preds)
elif self.base == "label":
mcm = multilabel_confusion_matrix(target, preds)
tns = mcm[:, 0, 0]
fns = mcm[:, 1, 0]
tps = mcm[:, 1, 1]
fps = mcm[:, 0, 1]
accuracy = (sum(tps) + sum(tns)) / (
sum(tps) + sum(tns) + sum(fns) + sum(fps))
precision = sum(tps) / (sum(tps) + sum(fps))
recall = sum(tps) / (sum(tps) + sum(fns))
F1 = 2 * (accuracy * recall) / (accuracy + recall)
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
return metric_dict