You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.5 KiB
97 lines
3.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
import numpy as np |
|
from .comfunc import rerange_index |
|
|
|
|
|
class EmlLoss(paddle.nn.Layer): |
|
def __init__(self, batch_size=40, samples_each_class=2): |
|
super(EmlLoss, self).__init__() |
|
assert (batch_size % samples_each_class == 0) |
|
self.samples_each_class = samples_each_class |
|
self.batch_size = batch_size |
|
self.rerange_index = rerange_index(batch_size, samples_each_class) |
|
self.thresh = 20.0 |
|
self.beta = 100000 |
|
|
|
def surrogate_function(self, beta, theta, bias): |
|
x = theta * paddle.exp(bias) |
|
output = paddle.log(1 + beta * x) / math.log(1 + beta) |
|
return output |
|
|
|
def surrogate_function_approximate(self, beta, theta, bias): |
|
output = ( |
|
paddle.log(theta) + bias + math.log(beta)) / math.log(1 + beta) |
|
return output |
|
|
|
def surrogate_function_stable(self, beta, theta, target, thresh): |
|
max_gap = paddle.to_tensor(thresh, dtype='float32') |
|
max_gap.stop_gradient = True |
|
|
|
target_max = paddle.maximum(target, max_gap) |
|
target_min = paddle.minimum(target, max_gap) |
|
|
|
loss1 = self.surrogate_function(beta, theta, target_min) |
|
loss2 = self.surrogate_function_approximate(beta, theta, target_max) |
|
bias = self.surrogate_function(beta, theta, max_gap) |
|
loss = loss1 + loss2 - bias |
|
return loss |
|
|
|
def forward(self, input, target=None): |
|
features = input["features"] |
|
samples_each_class = self.samples_each_class |
|
batch_size = self.batch_size |
|
rerange_index = self.rerange_index |
|
|
|
#calc distance |
|
diffs = paddle.unsqueeze( |
|
features, axis=1) - paddle.unsqueeze( |
|
features, axis=0) |
|
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1) |
|
|
|
tmp = paddle.reshape(similary_matrix, shape=[-1, 1]) |
|
rerange_index = paddle.to_tensor(rerange_index) |
|
tmp = paddle.gather(tmp, index=rerange_index) |
|
similary_matrix = paddle.reshape(tmp, shape=[-1, batch_size]) |
|
|
|
ignore, pos, neg = paddle.split( |
|
similary_matrix, |
|
num_or_sections=[ |
|
1, samples_each_class - 1, batch_size - samples_each_class |
|
], |
|
axis=1) |
|
ignore.stop_gradient = True |
|
|
|
pos_max = paddle.max(pos, axis=1, keepdim=True) |
|
pos = paddle.exp(pos - pos_max) |
|
pos_mean = paddle.mean(pos, axis=1, keepdim=True) |
|
|
|
neg_min = paddle.min(neg, axis=1, keepdim=True) |
|
neg = paddle.exp(neg_min - neg) |
|
neg_mean = paddle.mean(neg, axis=1, keepdim=True) |
|
|
|
bias = pos_max - neg_min |
|
theta = paddle.multiply(neg_mean, pos_mean) |
|
|
|
loss = self.surrogate_function_stable(self.beta, theta, bias, |
|
self.thresh) |
|
loss = paddle.mean(loss) |
|
return {"emlloss": loss}
|
|
|