You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

97 lines
3.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import numpy as np
from .comfunc import rerange_index
class EmlLoss(paddle.nn.Layer):
def __init__(self, batch_size=40, samples_each_class=2):
super(EmlLoss, self).__init__()
assert (batch_size % samples_each_class == 0)
self.samples_each_class = samples_each_class
self.batch_size = batch_size
self.rerange_index = rerange_index(batch_size, samples_each_class)
self.thresh = 20.0
self.beta = 100000
def surrogate_function(self, beta, theta, bias):
x = theta * paddle.exp(bias)
output = paddle.log(1 + beta * x) / math.log(1 + beta)
return output
def surrogate_function_approximate(self, beta, theta, bias):
output = (
paddle.log(theta) + bias + math.log(beta)) / math.log(1 + beta)
return output
def surrogate_function_stable(self, beta, theta, target, thresh):
max_gap = paddle.to_tensor(thresh, dtype='float32')
max_gap.stop_gradient = True
target_max = paddle.maximum(target, max_gap)
target_min = paddle.minimum(target, max_gap)
loss1 = self.surrogate_function(beta, theta, target_min)
loss2 = self.surrogate_function_approximate(beta, theta, target_max)
bias = self.surrogate_function(beta, theta, max_gap)
loss = loss1 + loss2 - bias
return loss
def forward(self, input, target=None):
features = input["features"]
samples_each_class = self.samples_each_class
batch_size = self.batch_size
rerange_index = self.rerange_index
#calc distance
diffs = paddle.unsqueeze(
features, axis=1) - paddle.unsqueeze(
features, axis=0)
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1)
tmp = paddle.reshape(similary_matrix, shape=[-1, 1])
rerange_index = paddle.to_tensor(rerange_index)
tmp = paddle.gather(tmp, index=rerange_index)
similary_matrix = paddle.reshape(tmp, shape=[-1, batch_size])
ignore, pos, neg = paddle.split(
similary_matrix,
num_or_sections=[
1, samples_each_class - 1, batch_size - samples_each_class
],
axis=1)
ignore.stop_gradient = True
pos_max = paddle.max(pos, axis=1, keepdim=True)
pos = paddle.exp(pos - pos_max)
pos_mean = paddle.mean(pos, axis=1, keepdim=True)
neg_min = paddle.min(neg, axis=1, keepdim=True)
neg = paddle.exp(neg_min - neg)
neg_mean = paddle.mean(neg, axis=1, keepdim=True)
bias = pos_max - neg_min
theta = paddle.multiply(neg_mean, pos_mean)
loss = self.surrogate_function_stable(self.beta, theta, bias,
self.thresh)
loss = paddle.mean(loss)
return {"emlloss": loss}