You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
6.7 KiB
169 lines
6.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import time |
|
import platform |
|
import paddle |
|
|
|
from ppcls.utils.misc import AverageMeter |
|
from ppcls.utils import logger |
|
|
|
|
|
def classification_eval(engine, epoch_id=0): |
|
output_info = dict() |
|
time_info = { |
|
"batch_cost": AverageMeter( |
|
"batch_cost", '.5f', postfix=" s,"), |
|
"reader_cost": AverageMeter( |
|
"reader_cost", ".5f", postfix=" s,"), |
|
} |
|
print_batch_step = engine.config["Global"]["print_batch_step"] |
|
|
|
metric_key = None |
|
tic = time.time() |
|
accum_samples = 0 |
|
total_samples = len( |
|
engine.eval_dataloader. |
|
dataset) if not engine.use_dali else engine.eval_dataloader.size |
|
max_iter = len(engine.eval_dataloader) - 1 if platform.system( |
|
) == "Windows" else len(engine.eval_dataloader) |
|
for iter_id, batch in enumerate(engine.eval_dataloader): |
|
if iter_id >= max_iter: |
|
break |
|
if iter_id == 5: |
|
for key in time_info: |
|
time_info[key].reset() |
|
if engine.use_dali: |
|
batch = [ |
|
paddle.to_tensor(batch[0]['data']), |
|
paddle.to_tensor(batch[0]['label']) |
|
] |
|
time_info["reader_cost"].update(time.time() - tic) |
|
batch_size = batch[0].shape[0] |
|
batch[0] = paddle.to_tensor(batch[0]).astype("float32") |
|
if not engine.config["Global"].get("use_multilabel", False): |
|
batch[1] = batch[1].reshape([-1, 1]).astype("int64") |
|
|
|
# image input |
|
if engine.amp: |
|
amp_level = engine.config['AMP'].get("level", "O1").upper() |
|
with paddle.amp.auto_cast( |
|
custom_black_list={ |
|
"flatten_contiguous_range", "greater_than" |
|
}, |
|
level=amp_level): |
|
out = engine.model(batch[0]) |
|
# calc loss |
|
if engine.eval_loss_func is not None: |
|
loss_dict = engine.eval_loss_func(out, batch[1]) |
|
for key in loss_dict: |
|
if key not in output_info: |
|
output_info[key] = AverageMeter(key, '7.5f') |
|
output_info[key].update(loss_dict[key].numpy()[0], |
|
batch_size) |
|
else: |
|
out = engine.model(batch[0]) |
|
# calc loss |
|
if engine.eval_loss_func is not None: |
|
loss_dict = engine.eval_loss_func(out, batch[1]) |
|
for key in loss_dict: |
|
if key not in output_info: |
|
output_info[key] = AverageMeter(key, '7.5f') |
|
output_info[key].update(loss_dict[key].numpy()[0], |
|
batch_size) |
|
|
|
# just for DistributedBatchSampler issue: repeat sampling |
|
current_samples = batch_size * paddle.distributed.get_world_size() |
|
accum_samples += current_samples |
|
|
|
# calc metric |
|
if engine.eval_metric_func is not None: |
|
if paddle.distributed.get_world_size() > 1: |
|
label_list = [] |
|
paddle.distributed.all_gather(label_list, batch[1]) |
|
labels = paddle.concat(label_list, 0) |
|
|
|
if isinstance(out, dict): |
|
if "Student" in out: |
|
out = out["Student"] |
|
elif "logits" in out: |
|
out = out["logits"] |
|
else: |
|
msg = "Error: Wrong key in out!" |
|
raise Exception(msg) |
|
if isinstance(out, list): |
|
pred = [] |
|
for x in out: |
|
pred_list = [] |
|
paddle.distributed.all_gather(pred_list, x) |
|
pred_x = paddle.concat(pred_list, 0) |
|
pred.append(pred_x) |
|
else: |
|
pred_list = [] |
|
paddle.distributed.all_gather(pred_list, out) |
|
pred = paddle.concat(pred_list, 0) |
|
|
|
if accum_samples > total_samples and not engine.use_dali: |
|
pred = pred[:total_samples + current_samples - |
|
accum_samples] |
|
labels = labels[:total_samples + current_samples - |
|
accum_samples] |
|
current_samples = total_samples + current_samples - accum_samples |
|
metric_dict = engine.eval_metric_func(pred, labels) |
|
else: |
|
metric_dict = engine.eval_metric_func(out, batch[1]) |
|
|
|
for key in metric_dict: |
|
if metric_key is None: |
|
metric_key = key |
|
if key not in output_info: |
|
output_info[key] = AverageMeter(key, '7.5f') |
|
|
|
output_info[key].update(metric_dict[key].numpy()[0], |
|
current_samples) |
|
|
|
time_info["batch_cost"].update(time.time() - tic) |
|
|
|
if iter_id % print_batch_step == 0: |
|
time_msg = "s, ".join([ |
|
"{}: {:.5f}".format(key, time_info[key].avg) |
|
for key in time_info |
|
]) |
|
|
|
ips_msg = "ips: {:.5f} images/sec".format( |
|
batch_size / time_info["batch_cost"].avg) |
|
|
|
metric_msg = ", ".join([ |
|
"{}: {:.5f}".format(key, output_info[key].val) |
|
for key in output_info |
|
]) |
|
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format( |
|
epoch_id, iter_id, |
|
len(engine.eval_dataloader), metric_msg, time_msg, ips_msg)) |
|
|
|
tic = time.time() |
|
if engine.use_dali: |
|
engine.eval_dataloader.reset() |
|
metric_msg = ", ".join([ |
|
"{}: {:.5f}".format(key, output_info[key].avg) for key in output_info |
|
]) |
|
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg)) |
|
|
|
# do not try to save best eval.model |
|
if engine.eval_metric_func is None: |
|
return -1 |
|
# return 1st metric in the dict |
|
return output_info[metric_key].avg
|
|
|