You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

176 lines
5.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import yaml
from collections import OrderedDict
import paddle
from paddlers.models.ppdet.data.source.category import get_categories
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
# Global dictionary
TRT_MIN_SUBGRAPH = {
'YOLO': 3,
'SSD': 60,
'RCNN': 40,
'RetinaNet': 40,
'S2ANet': 80,
'EfficientDet': 40,
'Face': 3,
'TTFNet': 60,
'FCOS': 16,
'SOLOv2': 60,
'HigherHRNet': 3,
'HRNet': 3,
'DeepSORT': 3,
'JDE': 10,
'FairMOT': 5,
'GFL': 16,
'PicoDet': 3,
'CenterNet': 5,
'TOOD': 5,
}
KEYPOINT_ARCH = ['HigherHRNet', 'TopDownHRNet']
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']
def _prune_input_spec(input_spec, program, targets):
# try to prune static program to figure out pruned input spec
# so we perform following operations in static mode
paddle.enable_static()
pruned_input_spec = [{}]
program = program.clone()
program = program._prune(targets=targets)
global_block = program.global_block()
for name, spec in input_spec[0].items():
try:
v = global_block.var(name)
pruned_input_spec[0][name] = spec
except Exception:
pass
paddle.disable_static()
return pruned_input_spec
def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
preprocess_list = []
anno_file = dataset_cfg.get_anno()
clsid2catid, catid2name = get_categories(metric, anno_file, arch)
label_list = [str(cat) for cat in catid2name.values()]
fuse_normalize = reader_cfg.get('fuse_normalize', False)
sample_transforms = reader_cfg['sample_transforms']
for st in sample_transforms[1:]:
for key, value in st.items():
p = {'type': key}
if key == 'Resize':
if int(image_shape[1]) != -1:
value['target_size'] = image_shape[1:]
if fuse_normalize and key == 'NormalizeImage':
continue
p.update(value)
preprocess_list.append(p)
batch_transforms = reader_cfg.get('batch_transforms', None)
if batch_transforms:
for bt in batch_transforms:
for key, value in bt.items():
# for deploy/infer, use PadStride(stride) instead PadBatch(pad_to_stride)
if key == 'PadBatch':
preprocess_list.append({
'type': 'PadStride',
'stride': value['pad_to_stride']
})
break
return preprocess_list, label_list
def _parse_tracker(tracker_cfg):
tracker_params = {}
for k, v in tracker_cfg.items():
tracker_params.update({k: v})
return tracker_params
def _dump_infer_config(config, path, image_shape, model):
arch_state = False
from paddlers.models.ppdet.core.config.yaml_helpers import setup_orderdict
setup_orderdict()
use_dynamic_shape = True if image_shape[2] == -1 else False
infer_cfg = OrderedDict({
'mode': 'fluid',
'draw_threshold': 0.5,
'metric': config['metric'],
'use_dynamic_shape': use_dynamic_shape
})
infer_arch = config['architecture']
if infer_arch in MOT_ARCH:
if infer_arch == 'DeepSORT':
tracker_cfg = config['DeepSORTTracker']
else:
tracker_cfg = config['JDETracker']
infer_cfg['tracker'] = _parse_tracker(tracker_cfg)
for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
if arch in infer_arch:
infer_cfg['arch'] = arch
infer_cfg['min_subgraph_size'] = min_subgraph_size
arch_state = True
break
if not arch_state:
logger.error(
'Architecture: {} is not supported for exporting model now.\n'.
format(infer_arch) +
'Please set TRT_MIN_SUBGRAPH in ppdet/engine/export_utils.py')
os._exit(0)
if 'mask_head' in config[config['architecture']] and config[config[
'architecture']]['mask_head']:
infer_cfg['mask'] = True
label_arch = 'detection_arch'
if infer_arch in KEYPOINT_ARCH:
label_arch = 'keypoint_arch'
if infer_arch in MOT_ARCH:
label_arch = 'mot_arch'
reader_cfg = config['TestMOTReader']
dataset_cfg = config['TestMOTDataset']
else:
reader_cfg = config['TestReader']
dataset_cfg = config['TestDataset']
infer_cfg['Preprocess'], infer_cfg['label_list'] = _parse_reader(
reader_cfg, dataset_cfg, config['metric'], label_arch, image_shape[1:])
if infer_arch == 'PicoDet':
infer_cfg['NMS'] = config['PicoHead']['nms']
# In order to speed up the prediction, the threshold of nms
# is adjusted here, which can be changed in infer_cfg.yml
config['PicoHead']['nms']["score_threshold"] = 0.3
config['PicoHead']['nms']["nms_threshold"] = 0.5
infer_cfg['fpn_stride'] = config['PicoHead']['fpn_stride']
yaml.dump(infer_cfg, open(path, 'w'))
logger.info("Export inference config file to {}".format(os.path.join(path)))