You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
544 lines
23 KiB
544 lines
23 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import math |
|
import os.path as osp |
|
import numpy as np |
|
from collections import OrderedDict |
|
import paddle |
|
import paddle.nn.functional as F |
|
from paddle.static import InputSpec |
|
import paddlers.models.ppcls as paddleclas |
|
import paddlers.custom_models.cls as cmcls |
|
import paddlers |
|
from paddlers.transforms import arrange_transforms |
|
from paddlers.utils import get_single_card_bs, DisablePrint |
|
import paddlers.utils.logging as logging |
|
from .base import BaseModel |
|
from paddlers.models.ppcls.metric import build_metrics |
|
from paddlers.models.ppcls.loss import build_loss |
|
from paddlers.models.ppcls.data.postprocess import build_postprocess |
|
from paddlers.utils.checkpoint import cls_pretrain_weights_dict |
|
from paddlers.transforms import ImgDecoder, Resize |
|
|
|
__all__ = [ |
|
"ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C", "CondenseNetV2_b" |
|
] |
|
|
|
|
|
class BaseClassifier(BaseModel): |
|
def __init__(self, |
|
model_name, |
|
in_channels=3, |
|
num_classes=2, |
|
use_mixed_loss=False, |
|
**params): |
|
self.init_params = locals() |
|
if 'with_net' in self.init_params: |
|
del self.init_params['with_net'] |
|
super(BaseClassifier, self).__init__('classifier') |
|
if not hasattr(paddleclas.arch.backbone, model_name) and \ |
|
not hasattr(cmcls, model_name): |
|
raise Exception("ERROR: There's no model named {}.".format( |
|
model_name)) |
|
self.model_name = model_name |
|
self.in_channels = in_channels |
|
self.num_classes = num_classes |
|
self.use_mixed_loss = use_mixed_loss |
|
self.metrics = None |
|
self.losses = None |
|
self.labels = None |
|
self._postprocess = None |
|
if params.get('with_net', True): |
|
params.pop('with_net', None) |
|
self.net = self.build_net(**params) |
|
self.find_unused_parameters = True |
|
|
|
def build_net(self, **params): |
|
with paddle.utils.unique_name.guard(): |
|
model = dict(paddleclas.arch.backbone.__dict__, |
|
**cmcls.__dict__)[self.model_name] |
|
# TODO: Determine whether there is in_channels |
|
try: |
|
net = model( |
|
class_num=self.num_classes, |
|
in_channels=self.in_channels, |
|
**params) |
|
except: |
|
net = model(class_num=self.num_classes, **params) |
|
self.in_channels = 3 |
|
return net |
|
|
|
def _fix_transforms_shape(self, image_shape): |
|
if hasattr(self, 'test_transforms'): |
|
if self.test_transforms is not None: |
|
has_resize_op = False |
|
resize_op_idx = -1 |
|
normalize_op_idx = len(self.test_transforms.transforms) |
|
for idx, op in enumerate(self.test_transforms.transforms): |
|
name = op.__class__.__name__ |
|
if name == 'Normalize': |
|
normalize_op_idx = idx |
|
if 'Resize' in name: |
|
has_resize_op = True |
|
resize_op_idx = idx |
|
|
|
if not has_resize_op: |
|
self.test_transforms.transforms.insert( |
|
normalize_op_idx, Resize(target_size=image_shape)) |
|
else: |
|
self.test_transforms.transforms[resize_op_idx] = Resize( |
|
target_size=image_shape) |
|
|
|
def _get_test_inputs(self, image_shape): |
|
if image_shape is not None: |
|
if len(image_shape) == 2: |
|
image_shape = [1, 3] + image_shape |
|
self._fix_transforms_shape(image_shape[-2:]) |
|
else: |
|
image_shape = [None, 3, -1, -1] |
|
self.fixed_input_shape = image_shape |
|
input_spec = [ |
|
InputSpec( |
|
shape=image_shape, name='image', dtype='float32') |
|
] |
|
return input_spec |
|
|
|
def run(self, net, inputs, mode): |
|
net_out = net(inputs[0]) |
|
label = paddle.to_tensor(inputs[1], dtype="int64") |
|
outputs = OrderedDict() |
|
if mode == 'test': |
|
result = self._postprocess(net_out) |
|
outputs = result[0] |
|
|
|
if mode == 'eval': |
|
# print(self._postprocess(net_out)[0]) # for test |
|
label = paddle.unsqueeze(label, axis=-1) |
|
metric_dict = self.metrics(net_out, label) |
|
outputs['top1'] = metric_dict["top1"] |
|
outputs['top5'] = metric_dict["top5"] |
|
|
|
if mode == 'train': |
|
loss_list = self.losses(net_out, label) |
|
outputs['loss'] = loss_list['loss'] |
|
return outputs |
|
|
|
def default_metric(self): |
|
default_config = [{"TopkAcc": {"topk": [1, 5]}}] |
|
return build_metrics(default_config) |
|
|
|
def default_loss(self): |
|
# TODO: use mixed loss and other loss |
|
default_config = [{"CELoss": {"weight": 1.0}}] |
|
return build_loss(default_config) |
|
|
|
def default_optimizer(self, |
|
parameters, |
|
learning_rate, |
|
num_epochs, |
|
num_steps_each_epoch, |
|
last_epoch=-1, |
|
L2_coeff=0.00007): |
|
decay_step = num_epochs * num_steps_each_epoch |
|
lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay( |
|
learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch) |
|
optimizer = paddle.optimizer.Momentum( |
|
learning_rate=lr_scheduler, |
|
parameters=parameters, |
|
momentum=0.9, |
|
weight_decay=paddle.regularizer.L2Decay(L2_coeff)) |
|
return optimizer |
|
|
|
def default_postprocess(self, class_id_map_file): |
|
default_config = { |
|
"name": "Topk", |
|
"topk": 1, |
|
"class_id_map_file": class_id_map_file |
|
} |
|
return build_postprocess(default_config) |
|
|
|
def train(self, |
|
num_epochs, |
|
train_dataset, |
|
train_batch_size=2, |
|
eval_dataset=None, |
|
optimizer=None, |
|
save_interval_epochs=1, |
|
log_interval_steps=2, |
|
save_dir='output', |
|
pretrain_weights='IMAGENET', |
|
learning_rate=0.1, |
|
lr_decay_power=0.9, |
|
early_stop=False, |
|
early_stop_patience=5, |
|
use_vdl=True, |
|
resume_checkpoint=None): |
|
""" |
|
Train the model. |
|
Args: |
|
num_epochs(int): The number of epochs. |
|
train_dataset(paddlers.dataset): Training dataset. |
|
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2. |
|
eval_dataset(paddlers.dataset, optional): |
|
Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None. |
|
optimizer(paddle.optimizer.Optimizer or None, optional): |
|
Optimizer used in training. If None, a default optimizer is used. Defaults to None. |
|
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. |
|
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. |
|
save_dir(str, optional): Directory to save the model. Defaults to 'output'. |
|
pretrain_weights(str or None, optional): |
|
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'. |
|
learning_rate(float, optional): Learning rate for training. Defaults to .025. |
|
lr_decay_power(float, optional): Learning decay power. Defaults to .9. |
|
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. |
|
early_stop_patience(int, optional): Early stop patience. Defaults to 5. |
|
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. |
|
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from. |
|
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and |
|
`pretrain_weights` can be set simultaneously. Defaults to None. |
|
|
|
""" |
|
if self.status == 'Infer': |
|
logging.error( |
|
"Exported inference model does not support training.", |
|
exit=True) |
|
if pretrain_weights is not None and resume_checkpoint is not None: |
|
logging.error( |
|
"pretrain_weights and resume_checkpoint cannot be set simultaneously.", |
|
exit=True) |
|
self.labels = train_dataset.labels |
|
if self.losses is None: |
|
self.losses = self.default_loss() |
|
self.metrics = self.default_metric() |
|
self._postprocess = self.default_postprocess(train_dataset.label_list) |
|
# print(self._postprocess.class_id_map) |
|
|
|
if optimizer is None: |
|
num_steps_each_epoch = train_dataset.num_samples // train_batch_size |
|
self.optimizer = self.default_optimizer( |
|
self.net.parameters(), learning_rate, num_epochs, |
|
num_steps_each_epoch, lr_decay_power) |
|
else: |
|
self.optimizer = optimizer |
|
|
|
if pretrain_weights is not None and not osp.exists(pretrain_weights): |
|
if pretrain_weights not in cls_pretrain_weights_dict[ |
|
self.model_name]: |
|
logging.warning( |
|
"Path of pretrain_weights('{}') does not exist!".format( |
|
pretrain_weights)) |
|
logging.warning("Pretrain_weights is forcibly set to '{}'. " |
|
"If don't want to use pretrain weights, " |
|
"set pretrain_weights to be None.".format( |
|
cls_pretrain_weights_dict[self.model_name][ |
|
0])) |
|
pretrain_weights = cls_pretrain_weights_dict[self.model_name][0] |
|
elif pretrain_weights is not None and osp.exists(pretrain_weights): |
|
if osp.splitext(pretrain_weights)[-1] != '.pdparams': |
|
logging.error( |
|
"Invalid pretrain weights. Please specify a '.pdparams' file.", |
|
exit=True) |
|
pretrained_dir = osp.join(save_dir, 'pretrain') |
|
is_backbone_weights = False # pretrain_weights == 'IMAGENET' # TODO: this is backbone |
|
self.net_initialize( |
|
pretrain_weights=pretrain_weights, |
|
save_dir=pretrained_dir, |
|
resume_checkpoint=resume_checkpoint, |
|
is_backbone_weights=is_backbone_weights) |
|
|
|
self.train_loop( |
|
num_epochs=num_epochs, |
|
train_dataset=train_dataset, |
|
train_batch_size=train_batch_size, |
|
eval_dataset=eval_dataset, |
|
save_interval_epochs=save_interval_epochs, |
|
log_interval_steps=log_interval_steps, |
|
save_dir=save_dir, |
|
early_stop=early_stop, |
|
early_stop_patience=early_stop_patience, |
|
use_vdl=use_vdl) |
|
|
|
def quant_aware_train(self, |
|
num_epochs, |
|
train_dataset, |
|
train_batch_size=2, |
|
eval_dataset=None, |
|
optimizer=None, |
|
save_interval_epochs=1, |
|
log_interval_steps=2, |
|
save_dir='output', |
|
learning_rate=0.0001, |
|
lr_decay_power=0.9, |
|
early_stop=False, |
|
early_stop_patience=5, |
|
use_vdl=True, |
|
resume_checkpoint=None, |
|
quant_config=None): |
|
""" |
|
Quantization-aware training. |
|
Args: |
|
num_epochs(int): The number of epochs. |
|
train_dataset(paddlers.dataset): Training dataset. |
|
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2. |
|
eval_dataset(paddlers.dataset, optional): |
|
Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None. |
|
optimizer(paddle.optimizer.Optimizer or None, optional): |
|
Optimizer used in training. If None, a default optimizer is used. Defaults to None. |
|
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. |
|
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. |
|
save_dir(str, optional): Directory to save the model. Defaults to 'output'. |
|
learning_rate(float, optional): Learning rate for training. Defaults to .025. |
|
lr_decay_power(float, optional): Learning decay power. Defaults to .9. |
|
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. |
|
early_stop_patience(int, optional): Early stop patience. Defaults to 5. |
|
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. |
|
quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb |
|
configuration will be used. Defaults to None. |
|
resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training |
|
from. If None, no training checkpoint will be resumed. Defaults to None. |
|
|
|
""" |
|
self._prepare_qat(quant_config) |
|
self.train( |
|
num_epochs=num_epochs, |
|
train_dataset=train_dataset, |
|
train_batch_size=train_batch_size, |
|
eval_dataset=eval_dataset, |
|
optimizer=optimizer, |
|
save_interval_epochs=save_interval_epochs, |
|
log_interval_steps=log_interval_steps, |
|
save_dir=save_dir, |
|
pretrain_weights=None, |
|
learning_rate=learning_rate, |
|
lr_decay_power=lr_decay_power, |
|
early_stop=early_stop, |
|
early_stop_patience=early_stop_patience, |
|
use_vdl=use_vdl, |
|
resume_checkpoint=resume_checkpoint) |
|
|
|
def evaluate(self, eval_dataset, batch_size=1, return_details=False): |
|
""" |
|
Evaluate the model. |
|
Args: |
|
eval_dataset(paddlers.dataset): Evaluation dataset. |
|
batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1. |
|
return_details(bool, optional): Whether to return evaluation details. Defaults to False. |
|
|
|
Returns: |
|
collections.OrderedDict with key-value pairs: |
|
{"top1": `acc of top1`, |
|
"top5": `acc of top5`}. |
|
|
|
""" |
|
arrange_transforms( |
|
model_type=self.model_type, |
|
transforms=eval_dataset.transforms, |
|
mode='eval') |
|
|
|
self.net.eval() |
|
nranks = paddle.distributed.get_world_size() |
|
local_rank = paddle.distributed.get_rank() |
|
if nranks > 1: |
|
# Initialize parallel environment if not done. |
|
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized( |
|
): |
|
paddle.distributed.init_parallel_env() |
|
|
|
batch_size_each_card = get_single_card_bs(batch_size) |
|
if batch_size_each_card > 1: |
|
batch_size_each_card = 1 |
|
batch_size = batch_size_each_card * paddlers.env_info['num'] |
|
logging.warning( |
|
"Classifier only supports batch_size=1 for each gpu/cpu card " \ |
|
"during evaluation, so batch_size " \ |
|
"is forcibly set to {}.".format(batch_size)) |
|
self.eval_data_loader = self.build_data_loader( |
|
eval_dataset, batch_size=batch_size, mode='eval') |
|
|
|
logging.info( |
|
"Start to evaluate(total_samples={}, total_steps={})...".format( |
|
eval_dataset.num_samples, |
|
math.ceil(eval_dataset.num_samples * 1.0 / batch_size))) |
|
|
|
top1s = [] |
|
top5s = [] |
|
with paddle.no_grad(): |
|
for step, data in enumerate(self.eval_data_loader): |
|
data.append(eval_dataset.transforms.transforms) |
|
outputs = self.run(self.net, data, 'eval') |
|
top1s.append(outputs["top1"]) |
|
top5s.append(outputs["top5"]) |
|
|
|
top1 = np.mean(top1s) |
|
top5 = np.mean(top5s) |
|
eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5])) |
|
if return_details: |
|
# TODO: add details |
|
return eval_metrics, None |
|
return eval_metrics |
|
|
|
def predict(self, img_file, transforms=None): |
|
""" |
|
Do inference. |
|
Args: |
|
Args: |
|
img_file(List[np.ndarray or str], str or np.ndarray): |
|
Image path or decoded image data in a BGR format, which also could constitute a list, |
|
meaning all images to be predicted as a mini-batch. |
|
transforms(paddlers.transforms.Compose or None, optional): |
|
Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None. |
|
|
|
Returns: |
|
If img_file is a string or np.array, the result is a dict with key-value pairs: |
|
{"label map": `class_ids_map`, "scores_map": `label_names_map`}. |
|
If img_file is a list, the result is a list composed of dicts with the corresponding fields: |
|
class_ids_map(np.ndarray): class_ids |
|
scores_map(np.ndarray): scores |
|
label_names_map(np.ndarray): label_names |
|
|
|
""" |
|
if transforms is None and not hasattr(self, 'test_transforms'): |
|
raise Exception("transforms need to be defined, now is None.") |
|
if transforms is None: |
|
transforms = self.test_transforms |
|
if isinstance(img_file, (str, np.ndarray)): |
|
images = [img_file] |
|
else: |
|
images = img_file |
|
batch_im, batch_origin_shape = self._preprocess(images, transforms, |
|
self.model_type) |
|
self.net.eval() |
|
data = (batch_im, batch_origin_shape, transforms.transforms) |
|
outputs = self.run(self.net, data, 'test') |
|
label_list = outputs['class_ids'] |
|
score_list = outputs['scores'] |
|
name_list = outputs['label_names'] |
|
if isinstance(img_file, list): |
|
prediction = [{ |
|
'class_ids_map': l, |
|
'scores_map': s, |
|
'label_names_map': n, |
|
} for l, s, n in zip(label_list, score_list, name_list)] |
|
else: |
|
prediction = { |
|
'class_ids': label_list[0], |
|
'scores': score_list[0], |
|
'label_names': name_list[0] |
|
} |
|
return prediction |
|
|
|
def _preprocess(self, images, transforms, to_tensor=True): |
|
arrange_transforms( |
|
model_type=self.model_type, transforms=transforms, mode='test') |
|
batch_im = list() |
|
batch_ori_shape = list() |
|
for im in images: |
|
sample = {'image': im} |
|
if isinstance(sample['image'], str): |
|
sample = ImgDecoder(to_rgb=False)(sample) |
|
ori_shape = sample['image'].shape[:2] |
|
im = transforms(sample)[0] |
|
batch_im.append(im) |
|
batch_ori_shape.append(ori_shape) |
|
if to_tensor: |
|
batch_im = paddle.to_tensor(batch_im) |
|
else: |
|
batch_im = np.asarray(batch_im) |
|
|
|
return batch_im, batch_ori_shape |
|
|
|
@staticmethod |
|
def get_transforms_shape_info(batch_ori_shape, transforms): |
|
batch_restore_list = list() |
|
for ori_shape in batch_ori_shape: |
|
restore_list = list() |
|
h, w = ori_shape[0], ori_shape[1] |
|
for op in transforms: |
|
if op.__class__.__name__ == 'Resize': |
|
restore_list.append(('resize', (h, w))) |
|
h, w = op.target_size |
|
elif op.__class__.__name__ == 'ResizeByShort': |
|
restore_list.append(('resize', (h, w))) |
|
im_short_size = min(h, w) |
|
im_long_size = max(h, w) |
|
scale = float(op.short_size) / float(im_short_size) |
|
if 0 < op.max_size < np.round(scale * im_long_size): |
|
scale = float(op.max_size) / float(im_long_size) |
|
h = int(round(h * scale)) |
|
w = int(round(w * scale)) |
|
elif op.__class__.__name__ == 'ResizeByLong': |
|
restore_list.append(('resize', (h, w))) |
|
im_long_size = max(h, w) |
|
scale = float(op.long_size) / float(im_long_size) |
|
h = int(round(h * scale)) |
|
w = int(round(w * scale)) |
|
elif op.__class__.__name__ == 'Padding': |
|
if op.target_size: |
|
target_h, target_w = op.target_size |
|
else: |
|
target_h = int( |
|
(np.ceil(h / op.size_divisor) * op.size_divisor)) |
|
target_w = int( |
|
(np.ceil(w / op.size_divisor) * op.size_divisor)) |
|
|
|
if op.pad_mode == -1: |
|
offsets = op.offsets |
|
elif op.pad_mode == 0: |
|
offsets = [0, 0] |
|
elif op.pad_mode == 1: |
|
offsets = [(target_h - h) // 2, (target_w - w) // 2] |
|
else: |
|
offsets = [target_h - h, target_w - w] |
|
restore_list.append(('padding', (h, w), offsets)) |
|
h, w = target_h, target_w |
|
|
|
batch_restore_list.append(restore_list) |
|
return batch_restore_list |
|
|
|
|
|
class ResNet50_vd(BaseClassifier): |
|
def __init__(self, num_classes=2, use_mixed_loss=False, **params): |
|
super(ResNet50_vd, self).__init__( |
|
model_name='ResNet50_vd', |
|
num_classes=num_classes, |
|
use_mixed_loss=use_mixed_loss, |
|
**params) |
|
|
|
|
|
class MobileNetV3_small_x1_0(BaseClassifier): |
|
def __init__(self, num_classes=2, use_mixed_loss=False, **params): |
|
super(MobileNetV3_small_x1_0, self).__init__( |
|
model_name='MobileNetV3_small_x1_0', |
|
num_classes=num_classes, |
|
use_mixed_loss=use_mixed_loss, |
|
**params) |
|
|
|
|
|
class HRNet_W18_C(BaseClassifier): |
|
def __init__(self, num_classes=2, use_mixed_loss=False, **params): |
|
super(HRNet_W18_C, self).__init__( |
|
model_name='HRNet_W18_C', |
|
num_classes=num_classes, |
|
use_mixed_loss=use_mixed_loss, |
|
**params) |
|
|
|
|
|
class CondenseNetV2_b(BaseClassifier): |
|
def __init__(self, num_classes=2, use_mixed_loss=False, **params): |
|
super(CondenseNetV2_b, self).__init__( |
|
model_name='CondenseNetV2_b', |
|
num_classes=num_classes, |
|
use_mixed_loss=use_mixed_loss, |
|
**params)
|
|
|