You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.0 KiB
148 lines
5.0 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
|
|
class ConvBNReLU(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
padding='same', |
|
**kwargs): |
|
super().__init__() |
|
self._conv = nn.Conv2D( |
|
in_channels, out_channels, kernel_size, padding=padding, **kwargs) |
|
if 'data_format' in kwargs: |
|
data_format = kwargs['data_format'] |
|
else: |
|
data_format = 'NCHW' |
|
self._batch_norm = nn.BatchNorm2D(out_channels, data_format=data_format) |
|
|
|
def forward(self, x): |
|
x = self._conv(x) |
|
x = self._batch_norm(x) |
|
x = F.relu(x) |
|
return x |
|
|
|
|
|
class ConvBN(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
padding='same', |
|
**kwargs): |
|
super().__init__() |
|
self._conv = nn.Conv2D( |
|
in_channels, out_channels, kernel_size, padding=padding, **kwargs) |
|
if 'data_format' in kwargs: |
|
data_format = kwargs['data_format'] |
|
else: |
|
data_format = 'NCHW' |
|
self._batch_norm = nn.BatchNorm2D(out_channels, data_format=data_format) |
|
|
|
def forward(self, x): |
|
x = self._conv(x) |
|
x = self._batch_norm(x) |
|
return x |
|
|
|
|
|
class ConvReLU(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
padding='same', |
|
**kwargs): |
|
super().__init__() |
|
self._conv = nn.Conv2D( |
|
in_channels, out_channels, kernel_size, padding=padding, **kwargs) |
|
if 'data_format' in kwargs: |
|
data_format = kwargs['data_format'] |
|
else: |
|
data_format = 'NCHW' |
|
self._relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self._conv(x) |
|
x = self._relu(x) |
|
return x |
|
|
|
|
|
class Add(nn.Layer): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, y, name=None): |
|
return paddle.add(x, y, name) |
|
|
|
|
|
class Activation(nn.Layer): |
|
""" |
|
The wrapper of activations. |
|
Args: |
|
act (str, optional): The activation name in lowercase. It must be one of ['elu', 'gelu', |
|
'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', |
|
'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', |
|
'hsigmoid']. Default: None, means identical transformation. |
|
Returns: |
|
A callable object of Activation. |
|
Raises: |
|
KeyError: When parameter `act` is not in the optional range. |
|
Examples: |
|
from paddleseg.models.common.activation import Activation |
|
relu = Activation("relu") |
|
print(relu) |
|
# <class 'paddle.nn.layer.activation.ReLU'> |
|
sigmoid = Activation("sigmoid") |
|
print(sigmoid) |
|
# <class 'paddle.nn.layer.activation.Sigmoid'> |
|
not_exit_one = Activation("not_exit_one") |
|
# KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink', |
|
# 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', |
|
# 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])" |
|
""" |
|
|
|
def __init__(self, act=None): |
|
super(Activation, self).__init__() |
|
self._act = act |
|
upper_act_names = nn.layer.activation.__dict__.keys() |
|
lower_act_names = [act.lower() for act in upper_act_names] |
|
act_dict = dict(zip(lower_act_names, upper_act_names)) |
|
if act is not None: |
|
if act in act_dict.keys(): |
|
act_name = act_dict[act] |
|
self.act_func = eval("nn.layer.activation.{}()".format( |
|
act_name)) |
|
else: |
|
raise KeyError("{} does not exist in the current {}".format( |
|
act, act_dict.keys())) |
|
|
|
def forward(self, x): |
|
if self._act is not None: |
|
return self.act_func(x) |
|
else: |
|
return x |
|
|
|
|
|
class Identity(nn.Layer): |
|
def __init__(self, *args, **kwargs): |
|
super(Identity, self).__init__() |
|
|
|
def forward(self, input): |
|
return input
|
|
|