You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

95 lines
3.2 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .blocks import Conv1x1, BasicConv
class ChannelAttention(nn.Layer):
"""
The channel attention module implementation based on PaddlePaddle.
The original article refers to
Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module"
(https://arxiv.org/abs/1807.06521).
Args:
in_ch (int): The number of channels of the input features.
ratio (int, optional): The channel reduction ratio. Default: 8.
"""
def __init__(self, in_ch, ratio=8):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.max_pool = nn.AdaptiveMaxPool2D(1)
self.fc1 = Conv1x1(in_ch, in_ch // ratio, bias=False, act=True)
self.fc2 = Conv1x1(in_ch // ratio, in_ch, bias=False)
def forward(self, x):
avg_out = self.fc2(self.fc1(self.avg_pool(x)))
max_out = self.fc2(self.fc1(self.max_pool(x)))
out = avg_out + max_out
return F.sigmoid(out)
class SpatialAttention(nn.Layer):
"""
The spatial attention module implementation based on PaddlePaddle.
The original article refers to
Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module"
(https://arxiv.org/abs/1807.06521).
Args:
kernel_size (int, optional): The size of the convolutional kernel. Default: 7.
"""
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv = BasicConv(2, 1, kernel_size, bias=False)
def forward(self, x):
avg_out = paddle.mean(x, axis=1, keepdim=True)
max_out = paddle.max(x, axis=1, keepdim=True)
x = paddle.concat([avg_out, max_out], axis=1)
x = self.conv(x)
return F.sigmoid(x)
class CBAM(nn.Layer):
"""
The CBAM implementation based on PaddlePaddle.
The original article refers to
Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module"
(https://arxiv.org/abs/1807.06521).
Args:
in_ch (int): The number of channels of the input features.
ratio (int, optional): The channel reduction ratio for the channel attention module. Default: 8.
kernel_size (int, optional): The size of the convolutional kernel used in the spatial attention module. Default: 7.
"""
def __init__(self, in_ch, ratio=8, kernel_size=7):
super(CBAM, self).__init__()
self.ca = ChannelAttention(in_ch, ratio=ratio)
self.sa = SpatialAttention(kernel_size=kernel_size)
def forward(self, x):
y = self.ca(x) * x
y = self.sa(y) * y
return y