You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

267 lines
8.5 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import os.path as osp
import time
import math
import imghdr
import chardet
import json
import platform
import numpy as np
import paddle
from . import logging
import paddlers
def seconds_to_hms(seconds):
h = math.floor(seconds / 3600)
m = math.floor((seconds - h * 3600) / 60)
s = int(seconds - h * 3600 - m * 60)
hms_str = "{}:{}:{}".format(h, m, s)
return hms_str
def get_encoding(path):
f = open(path, 'rb')
data = f.read()
file_encoding = chardet.detect(data).get('encoding')
f.close()
return file_encoding
def get_single_card_bs(batch_size):
card_num = paddlers.env_info['num']
place = paddlers.env_info['place']
if batch_size % card_num == 0:
return int(batch_size // card_num)
elif batch_size == 1:
# Evaluation of detection task only supports single card with batch size 1
return batch_size
else:
raise ValueError("Please support correct batch_size, \
which can be divided by available cards({}) in {}"
.format(card_num, place))
def dict2str(dict_input):
out = ''
for k, v in dict_input.items():
try:
v = '{:8.6f}'.format(float(v))
except:
pass
out = out + '{}={}, '.format(k, v)
return out.strip(', ')
def norm_path(path):
win_sep = "\\"
other_sep = "/"
if platform.system() == "Windows":
path = win_sep.join(path.split(other_sep))
else:
path = other_sep.join(path.split(win_sep))
return path
def is_pic(img_path):
valid_suffix = [
'JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png', 'npy'
]
suffix = img_path.split('.')[-1]
if suffix in valid_suffix:
return True
img_format = imghdr.what(img_path)
_, ext = osp.splitext(img_path)
if img_format == 'tiff' or ext == '.img':
return True
return False
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
class EarlyStop:
def __init__(self, patience, thresh):
self.patience = patience
self.counter = 0
self.score = None
self.max = 0
self.thresh = thresh
if patience < 1:
raise ValueError("Argument patience should be a positive integer.")
def __call__(self, current_score):
if self.score is None:
self.score = current_score
return False
elif current_score > self.max:
self.counter = 0
self.score = current_score
self.max = current_score
return False
else:
if (abs(self.score - current_score) < self.thresh or
current_score < self.score):
self.counter += 1
self.score = current_score
logging.debug("EarlyStopping: %i / %i" %
(self.counter, self.patience))
if self.counter >= self.patience:
logging.info("EarlyStopping: Stop training")
return True
return False
else:
self.counter = 0
self.score = current_score
return False
class DisablePrint(object):
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
class Times(object):
def __init__(self):
self.time = 0.
# Start time
self.st = 0.
# End time
self.et = 0.
def start(self):
self.st = time.time()
def end(self, iter_num=1, accumulative=True):
self.et = time.time()
if accumulative:
self.time += (self.et - self.st) / iter_num
else:
self.time = (self.et - self.st) / iter_num
def reset(self):
self.time = 0.
self.st = 0.
self.et = 0.
def value(self):
return round(self.time, 4)
class Timer(Times):
def __init__(self):
super(Timer, self).__init__()
self.preprocess_time_s = Times()
self.inference_time_s = Times()
self.postprocess_time_s = Times()
self.img_num = 0
self.repeats = 0
def info(self, average=False):
total_time = self.preprocess_time_s.value(
) * self.img_num + self.inference_time_s.value(
) + self.postprocess_time_s.value() * self.img_num
total_time = round(total_time, 4)
print("------------------ Inference Time Info ----------------------")
print("total_time(ms): {}, img_num: {}, batch_size: {}".format(
total_time * 1000, self.img_num, self.img_num))
preprocess_time = round(
self.preprocess_time_s.value() / self.repeats,
4) if average else self.preprocess_time_s.value()
postprocess_time = round(
self.postprocess_time_s.value() / self.repeats,
4) if average else self.postprocess_time_s.value()
inference_time = round(self.inference_time_s.value() / self.repeats,
4) if average else self.inference_time_s.value()
average_latency = total_time / self.repeats
print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
average_latency * 1000, 1 / average_latency))
print("preprocess_time_per_im(ms): {:.2f}, "
"inference_time_per_batch(ms): {:.2f}, "
"postprocess_time_per_im(ms): {:.2f}".format(
preprocess_time * 1000, inference_time * 1000,
postprocess_time * 1000))
def report(self, average=False):
dic = {}
dic['preprocess_time_s'] = round(
self.preprocess_time_s.value() / self.repeats,
4) if average else self.preprocess_time_s.value()
dic['postprocess_time_s'] = round(
self.postprocess_time_s.value() / self.repeats,
4) if average else self.postprocess_time_s.value()
dic['inference_time_s'] = round(
self.inference_time_s.value() / self.repeats,
4) if average else self.inference_time_s.value()
dic['img_num'] = self.img_num
total_time = self.preprocess_time_s.value(
) + self.inference_time_s.value() + self.postprocess_time_s.value()
dic['total_time_s'] = round(total_time, 4)
dic['batch_size'] = self.img_num / self.repeats
return dic
def reset(self):
self.preprocess_time_s.reset()
self.inference_time_s.reset()
self.postprocess_time_s.reset()
self.img_num = 0
self.repeats = 0
def to_data_parallel(layers, *args, **kwargs):
from paddlers.tasks.utils.res_adapters import GANAdapter
if isinstance(layers, GANAdapter):
layers = GANAdapter(
[to_data_parallel(g, *args, **kwargs) for g in layers.generators], [
to_data_parallel(d, *args, **kwargs)
for d in layers.discriminators
])
else:
layers = paddle.DataParallel(layers, *args, **kwargs)
return layers
def scheduler_step(optimizer, loss=None):
from paddlers.tasks.utils.res_adapters import OptimizerAdapter
if not isinstance(optimizer, OptimizerAdapter):
optimizer = [optimizer]
for optim in optimizer:
if isinstance(optim._learning_rate, paddle.optimizer.lr.LRScheduler):
# If ReduceOnPlateau is used as the scheduler, use the loss value as the metric.
if isinstance(optim._learning_rate,
paddle.optimizer.lr.ReduceOnPlateau):
optim._learning_rate.step(loss.item())
else:
optim._learning_rate.step()