You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
308 lines
11 KiB
308 lines
11 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import os.path as osp |
|
import argparse |
|
from collections import deque |
|
from functools import reduce |
|
|
|
import paddlers |
|
import numpy as np |
|
import cv2 |
|
try: |
|
from osgeo import gdal |
|
except: |
|
import gdal |
|
from tqdm import tqdm |
|
|
|
from utils import time_it |
|
|
|
IGN_CLS = 255 |
|
FMT = "im_{idx}{ext}" |
|
|
|
|
|
class QuadTreeNode(object): |
|
def __init__(self, i, j, h, w, level, cls_info=None): |
|
super().__init__() |
|
self.i = i |
|
self.j = j |
|
self.h = h |
|
self.w = w |
|
self.level = level |
|
self.cls_info = cls_info |
|
self.reset_children() |
|
|
|
@property |
|
def area(self): |
|
return self.h * self.w |
|
|
|
@property |
|
def is_bg_node(self): |
|
return self.cls_info is None |
|
|
|
@property |
|
def coords(self): |
|
return (self.i, self.j, self.h, self.w) |
|
|
|
def get_cls_cnt(self, cls): |
|
if self.cls_info is None or cls >= len(self.cls_info): |
|
return 0 |
|
return self.cls_info[cls] |
|
|
|
def get_children(self): |
|
for child in self.children: |
|
if child is not None: |
|
yield child |
|
|
|
def reset_children(self): |
|
self.children = [None, None, None, None] |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({self.i}, {self.j}, {self.h}, {self.w})" |
|
|
|
|
|
class QuadTree(object): |
|
def __init__(self, min_blk_size=256): |
|
super().__init__() |
|
self.min_blk_size = min_blk_size |
|
self.h = None |
|
self.w = None |
|
self.root = None |
|
|
|
def build_tree(self, mask_band, bg_cls=0): |
|
cls_info_table = self.preprocess(mask_band, bg_cls) |
|
n_rows = len(cls_info_table) |
|
if n_rows == 0: |
|
return None |
|
n_cols = len(cls_info_table[0]) |
|
self.root = self._build_tree(cls_info_table, 0, n_rows - 1, 0, |
|
n_cols - 1, 0) |
|
return self.root |
|
|
|
def preprocess(self, mask_ds, bg_cls): |
|
h, w = mask_ds.RasterYSize, mask_ds.RasterXSize |
|
s = self.min_blk_size |
|
if s >= h or s >= w: |
|
raise ValueError("`min_blk_size` must be smaller than image size.") |
|
cls_info_table = [] |
|
for i in range(0, h, s): |
|
cls_info_row = [] |
|
for j in range(0, w, s): |
|
if i + s > h: |
|
ch = h - i |
|
else: |
|
ch = s |
|
if j + s > w: |
|
cw = w - j |
|
else: |
|
cw = s |
|
arr = mask_ds.ReadAsArray(j, i, cw, ch) |
|
bins = np.bincount(arr.ravel()) |
|
if len(bins) > IGN_CLS: |
|
bins = np.delete(bins, IGN_CLS) |
|
if len(bins) > bg_cls and bins.sum() == bins[bg_cls]: |
|
cls_info_row.append(None) |
|
else: |
|
cls_info_row.append(bins) |
|
cls_info_table.append(cls_info_row) |
|
return cls_info_table |
|
|
|
def _build_tree(self, cls_info_table, i_st, i_ed, j_st, j_ed, level=0): |
|
if i_ed < i_st or j_ed < j_st: |
|
return None |
|
|
|
i = i_st * self.min_blk_size |
|
j = j_st * self.min_blk_size |
|
h = (i_ed - i_st + 1) * self.min_blk_size |
|
w = (j_ed - j_st + 1) * self.min_blk_size |
|
|
|
if i_ed == i_st and j_ed == j_st: |
|
return QuadTreeNode(i, j, h, w, level, cls_info_table[i_st][j_st]) |
|
|
|
i_mid = (i_ed + i_st) // 2 |
|
j_mid = (j_ed + j_st) // 2 |
|
|
|
root = QuadTreeNode(i, j, h, w, level) |
|
|
|
root.children[0] = self._build_tree(cls_info_table, i_st, i_mid, j_st, |
|
j_mid, level + 1) |
|
root.children[1] = self._build_tree(cls_info_table, i_st, i_mid, |
|
j_mid + 1, j_ed, level + 1) |
|
root.children[2] = self._build_tree(cls_info_table, i_mid + 1, i_ed, |
|
j_st, j_mid, level + 1) |
|
root.children[3] = self._build_tree(cls_info_table, i_mid + 1, i_ed, |
|
j_mid + 1, j_ed, level + 1) |
|
|
|
bins_list = [ |
|
node.cls_info for node in root.get_children() |
|
if node.cls_info is not None |
|
] |
|
if len(bins_list) > 0: |
|
merged_bins = reduce(merge_bins, bins_list) |
|
root.cls_info = merged_bins |
|
else: |
|
# Merge nodes |
|
root.reset_children() |
|
|
|
return root |
|
|
|
def get_nodes(self, tar_cls=None, max_level=None, include_bg=True): |
|
nodes = [] |
|
q = deque() |
|
q.append(self.root) |
|
while q: |
|
node = q.popleft() |
|
if max_level is None or node.level < max_level: |
|
for child in node.get_children(): |
|
if not include_bg and child.is_bg_node: |
|
continue |
|
if tar_cls is not None and child.get_cls_cnt(tar_cls) == 0: |
|
continue |
|
nodes.append(child) |
|
q.append(child) |
|
return nodes |
|
|
|
def visualize_regions(self, im_path, save_path='./vis_quadtree.png'): |
|
im = paddlers.transforms.decode_image(im_path) |
|
if im.ndim == 2: |
|
im = np.stack([im] * 3, axis=2) |
|
elif im.ndim == 3: |
|
c = im.shape[2] |
|
if c < 3: |
|
raise ValueError( |
|
"For multi-spectral images, the number of bands should not be less than 3." |
|
) |
|
else: |
|
# Take first three bands as R, G, and B |
|
im = im[..., :3] |
|
else: |
|
raise ValueError("Unrecognized data format.") |
|
nodes = self.get_nodes(include_bg=True) |
|
vis = np.ascontiguousarray(im) |
|
for node in nodes: |
|
i, j, h, w = node.coords |
|
vis = cv2.rectangle(vis, (j, i), (j + w, i + h), (0, 0, 255), 2) |
|
cv2.imwrite(save_path, vis) |
|
return save_path |
|
|
|
def print_tree(self, node=None, level=0): |
|
if node is None: |
|
node = self.root |
|
print(' ' * level + '-', node) |
|
for child in node.get_children(): |
|
self.print_tree(child, level + 1) |
|
|
|
|
|
def merge_bins(bins1, bins2): |
|
if len(bins1) < len(bins2): |
|
return merge_bins(bins2, bins1) |
|
elif len(bins1) == len(bins2): |
|
return bins1 + bins2 |
|
else: |
|
return bins1 + np.concatenate( |
|
[bins2, np.zeros(len(bins1) - len(bins2))]) |
|
|
|
|
|
@time_it |
|
def extract_ms_patches(im_paths, |
|
mask_path, |
|
save_dir, |
|
min_patch_size=256, |
|
bg_class=0, |
|
target_class=None, |
|
max_level=None, |
|
include_bg=False, |
|
nonzero_ratio=None, |
|
visualize=False): |
|
def _save_patch(src_path, i, j, h, w, subdir=None): |
|
src_path = osp.normpath(src_path) |
|
src_name, src_ext = osp.splitext(osp.basename(src_path)) |
|
subdir = subdir if subdir is not None else src_name |
|
dst_dir = osp.join(save_dir, subdir) |
|
if not osp.exists(dst_dir): |
|
os.makedirs(dst_dir) |
|
dst_name = FMT.format(idx=idx, ext=src_ext) |
|
dst_path = osp.join(dst_dir, dst_name) |
|
gdal.Translate(dst_path, src_path, srcWin=(j, i, w, h)) |
|
return dst_path |
|
|
|
if nonzero_ratio is not None: |
|
print( |
|
"`nonzero_ratio` is not None. More time will be consumed to filter out all-zero patches." |
|
) |
|
|
|
mask_ds = gdal.Open(mask_path) |
|
quad_tree = QuadTree(min_blk_size=min_patch_size) |
|
if mask_ds.RasterCount != 1: |
|
raise ValueError("The mask image has more than 1 band.") |
|
print("Start building quad tree...") |
|
quad_tree.build_tree(mask_ds, bg_class) |
|
if visualize: |
|
print("Start drawing rectangles...") |
|
save_path = quad_tree.visualize_regions(im_paths[0]) |
|
print(f"The visualization result is saved in {save_path} .") |
|
print("Quad tree has been built. Now start collecting nodes...") |
|
nodes = quad_tree.get_nodes( |
|
tar_cls=target_class, max_level=max_level, include_bg=include_bg) |
|
print("Nodes collected. Saving patches...") |
|
for idx, node in enumerate(tqdm(nodes)): |
|
i, j, h, w = node.coords |
|
real_h = min(h, mask_ds.RasterYSize - i) |
|
real_w = min(w, mask_ds.RasterXSize - j) |
|
if real_h < h or real_w < w: |
|
# Skip incomplete patches |
|
continue |
|
is_valid = True |
|
if nonzero_ratio is not None: |
|
for src_path in im_paths: |
|
im_ds = gdal.Open(src_path) |
|
arr = im_ds.ReadAsArray(j, i, real_w, real_h) |
|
if np.count_nonzero(arr) / arr.size < nonzero_ratio: |
|
is_valid = False |
|
break |
|
if is_valid: |
|
for src_path in im_paths: |
|
_save_patch(src_path, i, j, real_h, real_w) |
|
_save_patch(mask_path, i, j, real_h, real_w, 'mask') |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--im_paths", type=str, required=True, nargs='+', \ |
|
help="Path of images. Different images must have unique file names.") |
|
parser.add_argument("--mask_path", type=str, required=True, \ |
|
help="Path of mask.") |
|
parser.add_argument("--save_dir", type=str, default='output', \ |
|
help="Path to save the extracted patches.") |
|
parser.add_argument("--min_patch_size", type=int, default=256, \ |
|
help="Minimum patch size (height and width).") |
|
parser.add_argument("--bg_class", type=int, default=0, \ |
|
help="Index of the background category.") |
|
parser.add_argument("--target_class", type=int, default=None, \ |
|
help="Index of the category of interest.") |
|
parser.add_argument("--max_level", type=int, default=None, \ |
|
help="Maximum level of hierarchical patches.") |
|
parser.add_argument("--include_bg", action='store_true', \ |
|
help="Include patches that contains only background pixels.") |
|
parser.add_argument("--nonzero_ratio", type=float, default=None, \ |
|
help="Threshold for filtering out less informative patches.") |
|
parser.add_argument("--visualize", action='store_true', \ |
|
help="Visualize the quadtree.") |
|
args = parser.parse_args() |
|
|
|
extract_ms_patches(args.im_paths, args.mask_path, args.save_dir, |
|
args.min_patch_size, args.bg_class, args.target_class, |
|
args.max_level, args.include_bg, args.nonzero_ratio, |
|
args.visualize)
|
|
|