You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.4 KiB
82 lines
2.4 KiB
#!/usr/bin/env python |
|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import argparse |
|
import os |
|
import os.path as osp |
|
|
|
import cv2 |
|
import paddle |
|
import paddlers |
|
from tqdm import tqdm |
|
|
|
import custom_model |
|
import custom_trainer |
|
|
|
|
|
def read_file_list(file_list, sep=' '): |
|
with open(file_list, 'r') as f: |
|
for line in f: |
|
line = line.strip() |
|
parts = line.split(sep) |
|
yield parts |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--model_dir", default=None, type=str, help="Path of saved model.") |
|
parser.add_argument("--data_dir", type=str, help="Path of input dataset.") |
|
parser.add_argument("--file_list", type=str, help="Path of file list.") |
|
parser.add_argument( |
|
"--save_dir", |
|
default='./exp/predict', |
|
type=str, |
|
help="Path of directory to save prediction results.") |
|
parser.add_argument( |
|
"--ext", |
|
default='.png', |
|
type=str, |
|
help="Extension name of the saved image file.") |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
|
|
model = paddlers.tasks.load_model(args.model_dir) |
|
|
|
if not osp.exists(args.save_dir): |
|
os.makedirs(args.save_dir) |
|
|
|
with paddle.no_grad(): |
|
for parts in tqdm(read_file_list(args.file_list)): |
|
im1_path = osp.join(args.data_dir, parts[0]) |
|
im2_path = osp.join(args.data_dir, parts[1]) |
|
|
|
pred = model.predict((im1_path, im2_path)) |
|
cm = pred['label_map'] |
|
# {0,1} -> {0,255} |
|
cm[cm > 0] = 255 |
|
cm = cm.astype('uint8') |
|
|
|
if len(parts) > 2: |
|
name = osp.basename(parts[2]) |
|
else: |
|
name = osp.basename(im1_path) |
|
name = osp.splitext(name)[0] + args.ext |
|
out_path = osp.join(args.save_dir, name) |
|
cv2.imwrite(out_path, cm)
|
|
|