You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

85 lines
2.5 KiB

#!/usr/bin/env python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import os.path as osp
import cv2
import paddle
import paddlers
from tqdm import tqdm
from custom_model import CustomModel
from custom_trainer import make_trainer
def read_file_list(file_list, sep=' '):
with open(file_list, 'r') as f:
for line in f:
line = line.strip()
parts = line.split(sep)
yield parts
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir", default=None, type=str, help="Path of saved model.")
parser.add_argument("--data_dir", type=str, help="Path of input dataset.")
parser.add_argument("--file_list", type=str, help="Path of file list.")
parser.add_argument(
"--save_dir",
default='./exp/predict',
type=str,
help="Path of directory to save prediction results.")
parser.add_argument(
"--ext",
default='.png',
type=str,
help="Extension name of the saved image file.")
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
# 注册训练器
make_trainer(CustomModel)
model = paddlers.tasks.load_model(args.model_dir)
if not osp.exists(args.save_dir):
os.makedirs(args.save_dir)
with paddle.no_grad():
for parts in tqdm(read_file_list(args.file_list)):
im1_path = osp.join(args.data_dir, parts[0])
im2_path = osp.join(args.data_dir, parts[1])
pred = model.predict((im1_path, im2_path))
cm = pred['label_map']
# {0,1} -> {0,255}
cm[cm > 0] = 255
cm = cm.astype('uint8')
if len(parts) > 2:
name = osp.basename(parts[2])
else:
name = osp.basename(im1_path)
name = osp.splitext(name)[0] + args.ext
out_path = osp.join(args.save_dir, name)
cv2.imwrite(out_path, cm)