You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
7.3 KiB
220 lines
7.3 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import copy |
|
import sys |
|
from collections import OrderedDict |
|
import paddle |
|
import numpy as np |
|
from paddlers.models.ppdet.metrics.map_utils import prune_zero_padding, DetectionMAP |
|
from .coco_utils import get_infer_results, cocoapi_eval |
|
import paddlers.utils.logging as logging |
|
|
|
__all__ = ['Metric', 'VOCMetric', 'COCOMetric'] |
|
|
|
|
|
class Metric(paddle.metric.Metric): |
|
def name(self): |
|
return self.__class__.__name__ |
|
|
|
def reset(self): |
|
pass |
|
|
|
def accumulate(self): |
|
pass |
|
|
|
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate` |
|
# :metch:`reset`, in ppdet, we also need following 2 methods: |
|
|
|
# Abstract method for logging metric results |
|
def log(self): |
|
pass |
|
|
|
# Abstract method for getting metric results |
|
def get_results(self): |
|
pass |
|
|
|
|
|
class VOCMetric(Metric): |
|
def __init__(self, |
|
labels, |
|
coco_gt, |
|
overlap_thresh=0.5, |
|
map_type='11point', |
|
is_bbox_normalized=False, |
|
evaluate_difficult=False, |
|
classwise=False): |
|
self.cid2cname = {i: name for i, name in enumerate(labels)} |
|
self.coco_gt = coco_gt |
|
self.clsid2catid = { |
|
i: cat['id'] |
|
for i, cat in enumerate( |
|
self.coco_gt.loadCats(self.coco_gt.getCatIds())) |
|
} |
|
self.overlap_thresh = overlap_thresh |
|
self.map_type = map_type |
|
self.evaluate_difficult = evaluate_difficult |
|
self.detection_map = DetectionMAP( |
|
class_num=len(labels), |
|
overlap_thresh=overlap_thresh, |
|
map_type=map_type, |
|
is_bbox_normalized=is_bbox_normalized, |
|
evaluate_difficult=evaluate_difficult, |
|
catid2name=self.cid2cname, |
|
classwise=classwise) |
|
|
|
self.reset() |
|
|
|
def reset(self): |
|
self.details = {'gt': copy.deepcopy(self.coco_gt.dataset), 'bbox': []} |
|
self.detection_map.reset() |
|
|
|
def update(self, inputs, outputs): |
|
bbox_np = outputs['bbox'].numpy() |
|
bboxes = bbox_np[:, 2:] |
|
scores = bbox_np[:, 1] |
|
labels = bbox_np[:, 0] |
|
bbox_lengths = outputs['bbox_num'].numpy() |
|
|
|
if bboxes.shape == (1, 1) or bboxes is None: |
|
return |
|
gt_boxes = inputs['gt_bbox'] |
|
gt_labels = inputs['gt_class'] |
|
difficults = inputs['difficult'] if not self.evaluate_difficult \ |
|
else None |
|
|
|
scale_factor = inputs['scale_factor'].numpy( |
|
) if 'scale_factor' in inputs else np.ones( |
|
(gt_boxes.shape[0], 2)).astype('float32') |
|
|
|
bbox_idx = 0 |
|
for i in range(len(gt_boxes)): |
|
gt_box = gt_boxes[i].numpy() |
|
h, w = scale_factor[i] |
|
gt_box = gt_box / np.array([w, h, w, h]) |
|
gt_label = gt_labels[i].numpy() |
|
difficult = None if difficults is None \ |
|
else difficults[i].numpy() |
|
bbox_num = bbox_lengths[i] |
|
bbox = bboxes[bbox_idx:bbox_idx + bbox_num] |
|
score = scores[bbox_idx:bbox_idx + bbox_num] |
|
label = labels[bbox_idx:bbox_idx + bbox_num] |
|
gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label, |
|
difficult) |
|
self.detection_map.update(bbox, score, label, gt_box, gt_label, |
|
difficult) |
|
bbox_idx += bbox_num |
|
|
|
for l, s, b in zip(label, score, bbox): |
|
xmin, ymin, xmax, ymax = b.tolist() |
|
w = xmax - xmin |
|
h = ymax - ymin |
|
bbox = [xmin, ymin, w, h] |
|
coco_res = { |
|
'image_id': int(inputs['im_id']), |
|
'category_id': self.clsid2catid[int(l)], |
|
'bbox': bbox, |
|
'score': float(s) |
|
} |
|
self.details['bbox'].append(coco_res) |
|
|
|
def accumulate(self): |
|
logging.info("Accumulating evaluatation results...") |
|
self.detection_map.accumulate() |
|
|
|
def log(self): |
|
map_stat = 100. * self.detection_map.get_map() |
|
logging.info("bbox_map = {:.2f}%".format(map_stat)) |
|
|
|
def get_results(self): |
|
return {'bbox': [self.detection_map.get_map()]} |
|
|
|
def get(self): |
|
map_stat = 100. * self.detection_map.get_map() |
|
stats = {"bbox_map": map_stat} |
|
return stats |
|
|
|
|
|
class COCOMetric(Metric): |
|
def __init__(self, coco_gt, **kwargs): |
|
self.clsid2catid = { |
|
i: cat['id'] |
|
for i, cat in enumerate(coco_gt.loadCats(coco_gt.getCatIds())) |
|
} |
|
self.coco_gt = coco_gt |
|
self.classwise = kwargs.get('classwise', False) |
|
self.bias = 0 |
|
self.reset() |
|
|
|
def reset(self): |
|
# Only bbox and mask evaluation are supported currently. |
|
self.details = { |
|
'gt': copy.deepcopy(self.coco_gt.dataset), |
|
'bbox': [], |
|
'mask': [] |
|
} |
|
self.eval_stats = {} |
|
|
|
def update(self, inputs, outputs): |
|
outs = {} |
|
# Tensor -> numpy.ndarray |
|
for k, v in outputs.items(): |
|
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v |
|
|
|
im_id = inputs['im_id'] |
|
outs['im_id'] = im_id.numpy() if isinstance(im_id, |
|
paddle.Tensor) else im_id |
|
|
|
infer_results = get_infer_results( |
|
outs, self.clsid2catid, bias=self.bias) |
|
self.details['bbox'] += infer_results[ |
|
'bbox'] if 'bbox' in infer_results else [] |
|
self.details['mask'] += infer_results[ |
|
'mask'] if 'mask' in infer_results else [] |
|
|
|
def accumulate(self): |
|
if len(self.details['bbox']) > 0: |
|
bbox_stats = cocoapi_eval( |
|
copy.deepcopy(self.details['bbox']), |
|
'bbox', |
|
coco_gt=self.coco_gt, |
|
classwise=self.classwise) |
|
self.eval_stats['bbox'] = bbox_stats |
|
sys.stdout.flush() |
|
|
|
if len(self.details['mask']) > 0: |
|
seg_stats = cocoapi_eval( |
|
copy.deepcopy(self.details['mask']), |
|
'segm', |
|
coco_gt=self.coco_gt, |
|
classwise=self.classwise) |
|
self.eval_stats['mask'] = seg_stats |
|
sys.stdout.flush() |
|
|
|
def log(self): |
|
pass |
|
|
|
def get(self): |
|
if 'bbox' not in self.eval_stats: |
|
return {'bbox_mmap': 0.} |
|
if 'mask' in self.eval_stats: |
|
return OrderedDict( |
|
zip(['bbox_mmap', 'segm_mmap'], |
|
[self.eval_stats['bbox'][0], self.eval_stats['mask'][0]])) |
|
else: |
|
return {'bbox_mmap': self.eval_stats['bbox'][0]}
|
|
|