You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

220 lines
7.3 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import sys
from collections import OrderedDict
import paddle
import numpy as np
from paddlers.models.ppdet.metrics.map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
import paddlers.utils.logging as logging
__all__ = ['Metric', 'VOCMetric', 'COCOMetric']
class Metric(paddle.metric.Metric):
def name(self):
return self.__class__.__name__
def reset(self):
pass
def accumulate(self):
pass
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
# :metch:`reset`, in ppdet, we also need following 2 methods:
# Abstract method for logging metric results
def log(self):
pass
# Abstract method for getting metric results
def get_results(self):
pass
class VOCMetric(Metric):
def __init__(self,
labels,
coco_gt,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
classwise=False):
self.cid2cname = {i: name for i, name in enumerate(labels)}
self.coco_gt = coco_gt
self.clsid2catid = {
i: cat['id']
for i, cat in enumerate(
self.coco_gt.loadCats(self.coco_gt.getCatIds()))
}
self.overlap_thresh = overlap_thresh
self.map_type = map_type
self.evaluate_difficult = evaluate_difficult
self.detection_map = DetectionMAP(
class_num=len(labels),
overlap_thresh=overlap_thresh,
map_type=map_type,
is_bbox_normalized=is_bbox_normalized,
evaluate_difficult=evaluate_difficult,
catid2name=self.cid2cname,
classwise=classwise)
self.reset()
def reset(self):
self.details = {'gt': copy.deepcopy(self.coco_gt.dataset), 'bbox': []}
self.detection_map.reset()
def update(self, inputs, outputs):
bbox_np = outputs['bbox'].numpy()
bboxes = bbox_np[:, 2:]
scores = bbox_np[:, 1]
labels = bbox_np[:, 0]
bbox_lengths = outputs['bbox_num'].numpy()
if bboxes.shape == (1, 1) or bboxes is None:
return
gt_boxes = inputs['gt_bbox']
gt_labels = inputs['gt_class']
difficults = inputs['difficult'] if not self.evaluate_difficult \
else None
scale_factor = inputs['scale_factor'].numpy(
) if 'scale_factor' in inputs else np.ones(
(gt_boxes.shape[0], 2)).astype('float32')
bbox_idx = 0
for i in range(len(gt_boxes)):
gt_box = gt_boxes[i].numpy()
h, w = scale_factor[i]
gt_box = gt_box / np.array([w, h, w, h])
gt_label = gt_labels[i].numpy()
difficult = None if difficults is None \
else difficults[i].numpy()
bbox_num = bbox_lengths[i]
bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
score = scores[bbox_idx:bbox_idx + bbox_num]
label = labels[bbox_idx:bbox_idx + bbox_num]
gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
difficult)
self.detection_map.update(bbox, score, label, gt_box, gt_label,
difficult)
bbox_idx += bbox_num
for l, s, b in zip(label, score, bbox):
xmin, ymin, xmax, ymax = b.tolist()
w = xmax - xmin
h = ymax - ymin
bbox = [xmin, ymin, w, h]
coco_res = {
'image_id': int(inputs['im_id']),
'category_id': self.clsid2catid[int(l)],
'bbox': bbox,
'score': float(s)
}
self.details['bbox'].append(coco_res)
def accumulate(self):
logging.info("Accumulating evaluatation results...")
self.detection_map.accumulate()
def log(self):
map_stat = 100. * self.detection_map.get_map()
logging.info("bbox_map = {:.2f}%".format(map_stat))
def get_results(self):
return {'bbox': [self.detection_map.get_map()]}
def get(self):
map_stat = 100. * self.detection_map.get_map()
stats = {"bbox_map": map_stat}
return stats
class COCOMetric(Metric):
def __init__(self, coco_gt, **kwargs):
self.clsid2catid = {
i: cat['id']
for i, cat in enumerate(coco_gt.loadCats(coco_gt.getCatIds()))
}
self.coco_gt = coco_gt
self.classwise = kwargs.get('classwise', False)
self.bias = 0
self.reset()
def reset(self):
# Only bbox and mask evaluation are supported currently.
self.details = {
'gt': copy.deepcopy(self.coco_gt.dataset),
'bbox': [],
'mask': []
}
self.eval_stats = {}
def update(self, inputs, outputs):
outs = {}
# Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
im_id = inputs['im_id']
outs['im_id'] = im_id.numpy() if isinstance(im_id,
paddle.Tensor) else im_id
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.details['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
self.details['mask'] += infer_results[
'mask'] if 'mask' in infer_results else []
def accumulate(self):
if len(self.details['bbox']) > 0:
bbox_stats = cocoapi_eval(
copy.deepcopy(self.details['bbox']),
'bbox',
coco_gt=self.coco_gt,
classwise=self.classwise)
self.eval_stats['bbox'] = bbox_stats
sys.stdout.flush()
if len(self.details['mask']) > 0:
seg_stats = cocoapi_eval(
copy.deepcopy(self.details['mask']),
'segm',
coco_gt=self.coco_gt,
classwise=self.classwise)
self.eval_stats['mask'] = seg_stats
sys.stdout.flush()
def log(self):
pass
def get(self):
if 'bbox' not in self.eval_stats:
return {'bbox_mmap': 0.}
if 'mask' in self.eval_stats:
return OrderedDict(
zip(['bbox_mmap', 'segm_mmap'],
[self.eval_stats['bbox'][0], self.eval_stats['mask'][0]]))
else:
return {'bbox_mmap': self.eval_stats['bbox'][0]}