You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
467 lines
19 KiB
467 lines
19 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import sys |
|
import copy |
|
import os |
|
import os.path as osp |
|
import numpy as np |
|
import itertools |
|
from paddlers.models.ppdet.metrics.map_utils import draw_pr_curve |
|
from paddlers.models.ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res |
|
import paddlers.utils.logging as logging |
|
|
|
|
|
def get_infer_results(outs, catid, bias=0): |
|
""" |
|
Get result at the stage of inference. |
|
The output format is dictionary containing bbox or mask result. |
|
|
|
For example, bbox result is a list and each element contains |
|
image_id, category_id, bbox and score. |
|
""" |
|
|
|
if outs is None or len(outs) == 0: |
|
raise ValueError( |
|
'The number of valid detection result if zero. Please use reasonable model and check input data.' |
|
) |
|
|
|
im_id = outs['im_id'] |
|
|
|
infer_res = {} |
|
if 'bbox' in outs: |
|
if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6: |
|
infer_res['bbox'] = get_det_poly_res( |
|
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) |
|
else: |
|
infer_res['bbox'] = get_det_res( |
|
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) |
|
|
|
if 'mask' in outs: |
|
# mask post process |
|
infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'], |
|
outs['bbox_num'], im_id, catid) |
|
|
|
if 'segm' in outs: |
|
infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid) |
|
|
|
return infer_res |
|
|
|
|
|
def cocoapi_eval(anns, |
|
style, |
|
coco_gt=None, |
|
anno_file=None, |
|
max_dets=(100, 300, 1000), |
|
classwise=False): |
|
""" |
|
Args: |
|
anns (list): Evaluation result. |
|
style (str): COCOeval style. Choices are 'bbox', 'segm' and 'proposal'. |
|
coco_gt (str, optional): Whether to load COCOAPI through anno_file, |
|
eg: coco_gt = COCO(anno_file) |
|
anno_file (str, optional): COCO annotations file. Defaults to None. |
|
max_dets (tuple, optional): COCO evaluation maxDets. Defaults to (100, 300, 1000). |
|
classwise (bool, optional): Whether to calculate per-category statistics or not. Defaults to None. |
|
""" |
|
|
|
assert coco_gt is not None or anno_file is not None |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
if coco_gt is None: |
|
coco_gt = COCO(anno_file) |
|
logging.info("Start evaluate...") |
|
coco_dt = loadRes(coco_gt, anns) |
|
if style == 'proposal': |
|
coco_eval = COCOeval(coco_gt, coco_dt, 'bbox') |
|
coco_eval.params.useCats = 0 |
|
coco_eval.params.maxDets = list(max_dets) |
|
else: |
|
coco_eval = COCOeval(coco_gt, coco_dt, style) |
|
coco_eval.evaluate() |
|
coco_eval.accumulate() |
|
coco_eval.summarize() |
|
if classwise: |
|
# Compute per-category AP and PR curve |
|
try: |
|
from terminaltables import AsciiTable |
|
except Exception as e: |
|
logging.error( |
|
'terminaltables not found, plaese install terminaltables. ' |
|
'for example: `pip install terminaltables`.') |
|
raise e |
|
precisions = coco_eval.eval['precision'] |
|
cat_ids = coco_gt.getCatIds() |
|
# precision: (iou, recall, cls, area range, max dets) |
|
assert len(cat_ids) == precisions.shape[2] |
|
results_per_category = [] |
|
for idx, catId in enumerate(cat_ids): |
|
# area range index 0: all area ranges |
|
# max dets index -1: typically 100 per image |
|
nm = coco_gt.loadCats(catId)[0] |
|
precision = precisions[:, :, idx, 0, -1] |
|
precision = precision[precision > -1] |
|
if precision.size: |
|
ap = np.mean(precision) |
|
else: |
|
ap = float('nan') |
|
results_per_category.append( |
|
(str(nm["name"]), '{:0.3f}'.format(float(ap)))) |
|
pr_array = precisions[0, :, idx, 0, 2] |
|
recall_array = np.arange(0.0, 1.01, 0.01) |
|
draw_pr_curve( |
|
pr_array, |
|
recall_array, |
|
out_dir=style + '_pr_curve', |
|
file_name='{}_precision_recall_curve.jpg'.format(nm["name"])) |
|
|
|
num_columns = min(6, len(results_per_category) * 2) |
|
results_flatten = list(itertools.chain(*results_per_category)) |
|
headers = ['category', 'AP'] * (num_columns // 2) |
|
results_2d = itertools.zip_longest( |
|
*[results_flatten[i::num_columns] for i in range(num_columns)]) |
|
table_data = [headers] |
|
table_data += [result for result in results_2d] |
|
table = AsciiTable(table_data) |
|
logging.info('Per-category of {} AP: \n{}'.format(style, table.table)) |
|
logging.info("per-category PR curve has output to {} folder.".format( |
|
style + '_pr_curve')) |
|
# Flush coco evaluation result |
|
sys.stdout.flush() |
|
return coco_eval.stats |
|
|
|
|
|
def loadRes(coco_obj, anns): |
|
# This function has the same functionality as pycocotools.COCO.loadRes, |
|
# excepting that the input anns is list of results rather than a json file. |
|
# Refer to |
|
# https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305, |
|
|
|
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot, |
|
# or matplotlib.backends is imported for the first time. |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
from pycocotools.coco import COCO |
|
import pycocotools.mask as maskUtils |
|
import time |
|
res = COCO() |
|
res.dataset['images'] = [img for img in coco_obj.dataset['images']] |
|
|
|
tic = time.time() |
|
assert type(anns) == list, 'results in not an array of objects' |
|
annsImgIds = [ann['image_id'] for ann in anns] |
|
assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \ |
|
'Results do not correspond to current coco set' |
|
if 'caption' in anns[0]: |
|
imgIds = set([img['id'] for img in res.dataset['images']]) & set( |
|
[ann['image_id'] for ann in anns]) |
|
res.dataset['images'] = [ |
|
img for img in res.dataset['images'] if img['id'] in imgIds |
|
] |
|
for id, ann in enumerate(anns): |
|
ann['id'] = id + 1 |
|
elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: |
|
res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[ |
|
'categories']) |
|
for id, ann in enumerate(anns): |
|
bb = ann['bbox'] |
|
x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] |
|
if not 'segmentation' in ann: |
|
ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] |
|
ann['area'] = bb[2] * bb[3] |
|
ann['id'] = id + 1 |
|
ann['iscrowd'] = 0 |
|
elif 'segmentation' in anns[0]: |
|
res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[ |
|
'categories']) |
|
for id, ann in enumerate(anns): |
|
# Now only supports compressed RLE format as segmentation results. |
|
ann['area'] = maskUtils.area(ann['segmentation']) |
|
if not 'bbox' in ann: |
|
ann['bbox'] = maskUtils.toBbox(ann['segmentation']) |
|
ann['id'] = id + 1 |
|
ann['iscrowd'] = 0 |
|
elif 'keypoints' in anns[0]: |
|
res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[ |
|
'categories']) |
|
for id, ann in enumerate(anns): |
|
s = ann['keypoints'] |
|
x = s[0::3] |
|
y = s[1::3] |
|
x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y) |
|
ann['area'] = (x1 - x0) * (y1 - y0) |
|
ann['id'] = id + 1 |
|
ann['bbox'] = [x0, y0, x1 - x0, y1 - y0] |
|
|
|
res.dataset['annotations'] = anns |
|
res.createIndex() |
|
return res |
|
|
|
|
|
def makeplot(rs, ps, outDir, class_name, iou_type): |
|
""" |
|
针对某个特定类别,绘制不同评估要求下的准确率和召回率。 |
|
绘制结果说明参考COCODataset官网给出分析工具说明https://cocodataset.org/#detection-eval。 |
|
|
|
Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py#L13 |
|
|
|
Args: |
|
rs (np.array): 在不同置信度阈值下计算得到的召回率。 |
|
ps (np.array): 在不同置信度阈值下计算得到的准确率。ps与rs相同位置下的数值为同一个置信度阈值 |
|
计算得到的准确率与召回率。 |
|
outDir (str): 图表保存的路径。 |
|
class_name (str): 类别名。 |
|
iou_type (str): iou计算方式,若为检测框,则设置为'bbox',若为像素级分割结果,则设置为'segm'。 |
|
""" |
|
|
|
import matplotlib.pyplot as plt |
|
cs = np.vstack([ |
|
np.ones((2, 3)), |
|
np.array([0.31, 0.51, 0.74]), |
|
np.array([0.75, 0.31, 0.30]), |
|
np.array([0.36, 0.90, 0.38]), |
|
np.array([0.50, 0.39, 0.64]), |
|
np.array([1, 0.6, 0]), |
|
]) |
|
areaNames = ['allarea', 'small', 'medium', 'large'] |
|
types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN'] |
|
for i in range(len(areaNames)): |
|
area_ps = ps[..., i, 0] |
|
figure_title = iou_type + '-' + class_name + '-' + areaNames[i] |
|
aps = [ps_.mean() for ps_ in area_ps] |
|
ps_curve = [ |
|
ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps |
|
] |
|
ps_curve.insert(0, np.zeros(ps_curve[0].shape)) |
|
fig = plt.figure() |
|
ax = plt.subplot(111) |
|
for k in range(len(types)): |
|
ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5) |
|
ax.fill_between( |
|
rs, |
|
ps_curve[k], |
|
ps_curve[k + 1], |
|
color=cs[k], |
|
label=str(f'[{aps[k]:.3f}]' + types[k]), ) |
|
plt.xlabel('recall') |
|
plt.ylabel('precision') |
|
plt.xlim(0, 1.0) |
|
plt.ylim(0, 1.0) |
|
plt.title(figure_title) |
|
plt.legend() |
|
# plt.show() |
|
fig.savefig(osp.join(outDir, f'{figure_title}.png')) |
|
plt.close(fig) |
|
|
|
|
|
def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type, areas=None): |
|
""" |
|
针对某个特定类别,分析忽略亚类混淆和类别混淆时的准确率。 |
|
|
|
Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py#L174 |
|
|
|
Args: |
|
k (int): 待分析类别的序号。 |
|
cocoDt (pycocotols.coco.COCO): 按COCO类存放的预测结果。 |
|
cocoGt (pycocotols.coco.COCO): 按COCO类存放的真值。 |
|
catId (int): 待分析类别在数据集中的类别id。 |
|
iou_type (str): iou计算方式,若为检测框,则设置为'bbox',若为像素级分割结果,则设置为'segm'。 |
|
|
|
Returns: |
|
int: |
|
dict: 有关键字'ps_supercategory'和'ps_allcategory'。关键字'ps_supercategory'的键值是忽略亚类间 |
|
混淆时的准确率,关键字'ps_allcategory'的键值是忽略类别间混淆时的准确率。 |
|
""" |
|
|
|
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot, |
|
# or matplotlib.backends is imported for the first time. |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
nm = cocoGt.loadCats(catId)[0] |
|
print(f'--------------analyzing {k + 1}-{nm["name"]}---------------') |
|
ps_ = {} |
|
dt = copy.deepcopy(cocoDt) |
|
nm = cocoGt.loadCats(catId)[0] |
|
imgIds = cocoGt.getImgIds() |
|
dt_anns = dt.dataset['annotations'] |
|
select_dt_anns = [] |
|
for ann in dt_anns: |
|
if ann['category_id'] == catId: |
|
select_dt_anns.append(ann) |
|
dt.dataset['annotations'] = select_dt_anns |
|
dt.createIndex() |
|
# Compute precision but ignore superclass confusion. |
|
gt = copy.deepcopy(cocoGt) |
|
child_catIds = gt.getCatIds(supNms=[nm['supercategory']]) |
|
for idx, ann in enumerate(gt.dataset['annotations']): |
|
if ann['category_id'] in child_catIds and ann['category_id'] != catId: |
|
gt.dataset['annotations'][idx]['ignore'] = 1 |
|
gt.dataset['annotations'][idx]['iscrowd'] = 1 |
|
gt.dataset['annotations'][idx]['category_id'] = catId |
|
cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) |
|
cocoEval.params.imgIds = imgIds |
|
cocoEval.params.maxDets = [100] |
|
cocoEval.params.iouThrs = [0.1] |
|
cocoEval.params.useCats = 1 |
|
if areas: |
|
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], |
|
[areas[0], areas[1]], [areas[1], areas[2]]] |
|
cocoEval.evaluate() |
|
cocoEval.accumulate() |
|
ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :] |
|
ps_['ps_supercategory'] = ps_supercategory |
|
# compute precision but ignore any class confusion |
|
gt = copy.deepcopy(cocoGt) |
|
for idx, ann in enumerate(gt.dataset['annotations']): |
|
if ann['category_id'] != catId: |
|
gt.dataset['annotations'][idx]['ignore'] = 1 |
|
gt.dataset['annotations'][idx]['iscrowd'] = 1 |
|
gt.dataset['annotations'][idx]['category_id'] = catId |
|
cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) |
|
cocoEval.params.imgIds = imgIds |
|
cocoEval.params.maxDets = [100] |
|
cocoEval.params.iouThrs = [0.1] |
|
cocoEval.params.useCats = 1 |
|
if areas: |
|
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], |
|
[areas[0], areas[1]], [areas[1], areas[2]]] |
|
cocoEval.evaluate() |
|
cocoEval.accumulate() |
|
ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :] |
|
ps_['ps_allcategory'] = ps_allcategory |
|
return k, ps_ |
|
|
|
|
|
def coco_error_analysis(eval_details_file=None, |
|
gt=None, |
|
pred_bbox=None, |
|
pred_mask=None, |
|
save_dir='./output'): |
|
""" |
|
逐个分析模型预测错误的原因,并将分析结果以图表的形式展示。 |
|
分析结果说明参考COCODataset官网给出分析工具说明https://cocodataset.org/#detection-eval。 |
|
|
|
Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py |
|
|
|
Args: |
|
eval_details_file (str): 模型评估结果的保存路径,包含真值信息和预测结果。 |
|
gt (list): 数据集的真值信息。默认值为None。 |
|
pred_bbox (list): 模型在数据集上的预测框。默认值为None。 |
|
pred_mask (list): 模型在数据集上的预测mask。默认值为None。 |
|
save_dir (str): 可视化结果保存路径。默认值为'./output'。 |
|
|
|
Note: |
|
eval_details_file的优先级更高,只要eval_details_file不为None, |
|
就会从eval_details_file提取真值信息和预测结果做分析。 |
|
当eval_details_file为None时,则用gt、pred_mask、pred_mask做分析。 |
|
""" |
|
|
|
import multiprocessing as mp |
|
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot, |
|
# or matplotlib.backends is imported for the first time. |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
if eval_details_file is not None: |
|
import json |
|
with open(eval_details_file, 'r') as f: |
|
eval_details = json.load(f) |
|
pred_bbox = eval_details['bbox'] |
|
if 'mask' in eval_details: |
|
pred_mask = eval_details['mask'] |
|
gt = eval_details['gt'] |
|
if gt is None or pred_bbox is None: |
|
raise ValueError( |
|
"gt/pred_bbox/pred_mask is None now. Please set right eval_details_file or gt/pred_bbox/pred_mask." |
|
) |
|
if pred_bbox is not None and len(pred_bbox) == 0: |
|
raise ValueError("There is no predicted bbox.") |
|
if pred_mask is not None and len(pred_mask) == 0: |
|
raise ValueError("There is no predicted mask.") |
|
|
|
def _analyze_results(cocoGt, cocoDt, res_type, out_dir): |
|
""" |
|
Refer to |
|
https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py#L235 |
|
""" |
|
directory = osp.dirname(osp.join(out_dir, '')) |
|
if not osp.exists(directory): |
|
logging.info('-------------create {}-----------------'.format( |
|
out_dir)) |
|
os.makedirs(directory) |
|
|
|
imgIds = cocoGt.getImgIds() |
|
res_out_dir = osp.join(out_dir, res_type, '') |
|
res_directory = os.path.dirname(res_out_dir) |
|
if not os.path.exists(res_directory): |
|
logging.info('-------------create {}-----------------'.format( |
|
res_out_dir)) |
|
os.makedirs(res_directory) |
|
iou_type = res_type |
|
cocoEval = COCOeval( |
|
copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type) |
|
cocoEval.params.imgIds = imgIds |
|
cocoEval.params.iouThrs = [.75, .5, .1] |
|
cocoEval.params.maxDets = [100] |
|
cocoEval.evaluate() |
|
cocoEval.accumulate() |
|
ps = cocoEval.eval['precision'] |
|
ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))]) |
|
catIds = cocoGt.getCatIds() |
|
recThrs = cocoEval.params.recThrs |
|
thread_num = mp.cpu_count() if mp.cpu_count() < 8 else 8 |
|
thread_pool = mp.pool.ThreadPool(thread_num) |
|
args = [(k, cocoDt, cocoGt, catId, iou_type) |
|
for k, catId in enumerate(catIds)] |
|
analyze_results = thread_pool.starmap(analyze_individual_category, args) |
|
for k, catId in enumerate(catIds): |
|
nm = cocoGt.loadCats(catId)[0] |
|
logging.info('--------------saving {}-{}---------------'.format( |
|
k + 1, nm['name'])) |
|
analyze_result = analyze_results[k] |
|
assert k == analyze_result[0], "" |
|
ps_supercategory = analyze_result[1]['ps_supercategory'] |
|
ps_allcategory = analyze_result[1]['ps_allcategory'] |
|
# Compute precision but ignore superclass confusion. |
|
ps[3, :, k, :, :] = ps_supercategory |
|
# Compute precision but ignore any class confusion. |
|
ps[4, :, k, :, :] = ps_allcategory |
|
# Fill in background and false negative errors and plot. |
|
ps[ps == -1] = 0 |
|
ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0 |
|
ps[6, :, k, :, :] = 1.0 |
|
makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type) |
|
makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type) |
|
|
|
coco_gt = COCO() |
|
coco_gt.dataset = gt |
|
coco_gt.createIndex() |
|
|
|
if pred_bbox is not None: |
|
coco_dt = loadRes(coco_gt, pred_bbox) |
|
_analyze_results(coco_gt, coco_dt, res_type='bbox', out_dir=save_dir) |
|
if pred_mask is not None: |
|
coco_dt = loadRes(coco_gt, pred_mask) |
|
_analyze_results(coco_gt, coco_dt, res_type='segm', out_dir=save_dir) |
|
logging.info("The analysis figures are saved in {}.".format(save_dir))
|
|
|