You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
437 lines
15 KiB
437 lines
15 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import os.path as osp |
|
import math |
|
from abc import ABCMeta, abstractmethod |
|
from collections import Counter, defaultdict |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import paddlers.utils.logging as logging |
|
|
|
|
|
class Cache(metaclass=ABCMeta): |
|
@abstractmethod |
|
def get_block(self, i_st, j_st, h, w): |
|
pass |
|
|
|
|
|
class SlowCache(Cache): |
|
def __init__(self): |
|
super(SlowCache, self).__init__() |
|
self.cache = defaultdict(Counter) |
|
|
|
def push_pixel(self, i, j, l): |
|
self.cache[(i, j)][l] += 1 |
|
|
|
def push_block(self, i_st, j_st, h, w, data): |
|
for i in range(0, h): |
|
for j in range(0, w): |
|
self.push_pixel(i_st + i, j_st + j, data[i, j]) |
|
|
|
def pop_pixel(self, i, j): |
|
self.cache.pop((i, j)) |
|
|
|
def pop_block(self, i_st, j_st, h, w): |
|
for i in range(0, h): |
|
for j in range(0, w): |
|
self.pop_pixel(i_st + i, j_st + j) |
|
|
|
def get_pixel(self, i, j): |
|
winners = self.cache[(i, j)].most_common(1) |
|
winner = winners[0] |
|
return winner[0] |
|
|
|
def get_block(self, i_st, j_st, h, w): |
|
block = [] |
|
for i in range(i_st, i_st + h): |
|
row = [] |
|
for j in range(j_st, j_st + w): |
|
row.append(self.get_pixel(i, j)) |
|
block.append(row) |
|
return np.asarray(block) |
|
|
|
|
|
class ProbCache(Cache): |
|
def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'): |
|
super(ProbCache, self).__init__() |
|
self.cache = None |
|
self.h = h |
|
self.w = w |
|
self.ch = ch |
|
self.cw = cw |
|
self.sh = sh |
|
self.sw = sw |
|
if not issubclass(dtype, np.floating): |
|
raise TypeError("`dtype` must be one of the floating types.") |
|
self.dtype = dtype |
|
order = order.lower() |
|
if order not in ('c', 'f'): |
|
raise ValueError("`order` other than 'c' and 'f' is not supported.") |
|
self.order = order |
|
|
|
def _alloc_memory(self, nc): |
|
if self.order == 'c': |
|
# Colomn-first order (C-style) |
|
# |
|
# <-- cw --> |
|
# |--------|---------------------|^ ^ |
|
# | || | sh |
|
# |--------|---------------------|| ch v |
|
# | || |
|
# |--------|---------------------|v |
|
# <------------ w ---------------> |
|
self.cache = np.zeros((self.ch, self.w, nc), dtype=self.dtype) |
|
elif self.order == 'f': |
|
# Row-first order (Fortran-style) |
|
# |
|
# <-- sw --> |
|
# <---- cw ----> |
|
# |--------|---|^ ^ |
|
# | | || | |
|
# | | || ch |
|
# | | || | |
|
# |--------|---|| h v |
|
# | | || |
|
# | | || |
|
# | | || |
|
# |--------|---|v |
|
self.cache = np.zeros((self.h, self.cw, nc), dtype=self.dtype) |
|
|
|
def update_block(self, i_st, j_st, h, w, prob_map): |
|
if self.cache is None: |
|
nc = prob_map.shape[2] |
|
# Lazy allocation of memory |
|
self._alloc_memory(nc) |
|
self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map |
|
|
|
def roll_cache(self, shift): |
|
if self.order == 'c': |
|
self.cache[:-shift] = self.cache[shift:] |
|
self.cache[-shift:, :] = 0 |
|
elif self.order == 'f': |
|
self.cache[:, :-shift] = self.cache[:, shift:] |
|
self.cache[:, -shift:] = 0 |
|
|
|
def get_block(self, i_st, j_st, h, w): |
|
return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2) |
|
|
|
|
|
class OverlapProcessor(metaclass=ABCMeta): |
|
def __init__(self, h, w, ch, cw, sh, sw): |
|
super(OverlapProcessor, self).__init__() |
|
self.h = h |
|
self.w = w |
|
self.ch = ch |
|
self.cw = cw |
|
self.sh = sh |
|
self.sw = sw |
|
|
|
@abstractmethod |
|
def process_pred(self, out, xoff, yoff): |
|
pass |
|
|
|
|
|
class KeepFirstProcessor(OverlapProcessor): |
|
def __init__(self, h, w, ch, cw, sh, sw, ds, inval=255): |
|
super(KeepFirstProcessor, self).__init__(h, w, ch, cw, sh, sw) |
|
self.ds = ds |
|
self.inval = inval |
|
|
|
def process_pred(self, out, xoff, yoff): |
|
pred = out['label_map'] |
|
pred = pred[:self.ch, :self.cw] |
|
rd_block = self.ds.ReadAsArray(xoff, yoff, self.cw, self.ch) |
|
mask = rd_block != self.inval |
|
pred = np.where(mask, rd_block, pred) |
|
return pred |
|
|
|
|
|
class KeepLastProcessor(OverlapProcessor): |
|
def process_pred(self, out, xoff, yoff): |
|
pred = out['label_map'] |
|
pred = pred[:self.ch, :self.cw] |
|
return pred |
|
|
|
|
|
class AccumProcessor(OverlapProcessor): |
|
def __init__(self, |
|
h, |
|
w, |
|
ch, |
|
cw, |
|
sh, |
|
sw, |
|
dtype=np.float16, |
|
assign_weight=True): |
|
super(AccumProcessor, self).__init__(h, w, ch, cw, sh, sw) |
|
self.cache = ProbCache(h, w, ch, cw, sh, sw, dtype=dtype, order='c') |
|
self.prev_yoff = None |
|
self.assign_weight = assign_weight |
|
|
|
def process_pred(self, out, xoff, yoff): |
|
if self.prev_yoff is not None and yoff != self.prev_yoff: |
|
if yoff < self.prev_yoff: |
|
raise RuntimeError |
|
self.cache.roll_cache(yoff - self.prev_yoff) |
|
pred = out['label_map'] |
|
pred = pred[:self.ch, :self.cw] |
|
prob = out['score_map'] |
|
prob = prob[:self.ch, :self.cw] |
|
if self.assign_weight: |
|
prob = assign_border_weights(prob, border_ratio=0.25, inplace=True) |
|
self.cache.update_block(0, xoff, self.ch, self.cw, prob) |
|
pred = self.cache.get_block(0, xoff, self.ch, self.cw) |
|
self.prev_yoff = yoff |
|
return pred |
|
|
|
|
|
def assign_border_weights(array, weight=0.5, border_ratio=0.25, inplace=True): |
|
if not inplace: |
|
array = array.copy() |
|
h, w = array.shape[:2] |
|
hm, wm = int(h * border_ratio), int(w * border_ratio) |
|
array[:hm] *= weight |
|
array[-hm:] *= weight |
|
array[:, :wm] *= weight |
|
array[:, -wm:] *= weight |
|
return array |
|
|
|
|
|
def read_block(ds, |
|
xoff, |
|
yoff, |
|
xsize, |
|
ysize, |
|
tar_xsize=None, |
|
tar_ysize=None, |
|
pad_val=0): |
|
if tar_xsize is None: |
|
tar_xsize = xsize |
|
if tar_ysize is None: |
|
tar_ysize = ysize |
|
# Read data from dataset |
|
block = ds.ReadAsArray(xoff, yoff, xsize, ysize) |
|
c, real_ysize, real_xsize = block.shape |
|
assert real_ysize == ysize and real_xsize == xsize |
|
# [c, h, w] -> [h, w, c] |
|
block = block.transpose((1, 2, 0)) |
|
if (real_ysize, real_xsize) != (tar_ysize, tar_xsize): |
|
if real_ysize >= tar_ysize or real_xsize >= tar_xsize: |
|
raise ValueError |
|
padded_block = np.full( |
|
(tar_ysize, tar_xsize, c), fill_value=pad_val, dtype=block.dtype) |
|
# Fill |
|
padded_block[:real_ysize, :real_xsize] = block |
|
return padded_block |
|
else: |
|
return block |
|
|
|
|
|
def slider_predict(predict_func, |
|
img_file, |
|
save_dir, |
|
block_size, |
|
overlap, |
|
transforms, |
|
invalid_value, |
|
merge_strategy, |
|
batch_size, |
|
show_progress=False): |
|
""" |
|
Do inference using sliding windows. |
|
|
|
Args: |
|
predict_func (callable): A callable object that makes the prediction. |
|
img_file (str|tuple[str]): Image path(s). |
|
save_dir (str): Directory that contains saved geotiff file. |
|
block_size (list[int] | tuple[int] | int): |
|
Size of block. If `block_size` is list or tuple, it should be in |
|
(W, H) format. |
|
overlap (list[int] | tuple[int] | int): |
|
Overlap between two blocks. If `overlap` is list or tuple, it should |
|
be in (W, H) format. |
|
transforms (paddlers.transforms.Compose|None): Transforms for inputs. If |
|
None, the transforms for evaluation process will be used. |
|
invalid_value (int): Value that marks invalid pixels in output image. |
|
Defaults to 255. |
|
merge_strategy (str): Strategy to merge overlapping blocks. Choices are |
|
{'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last' |
|
means keeping the values of the first and the last block in |
|
traversal order, respectively. 'accum' means determining the class |
|
of an overlapping pixel according to accumulated probabilities. |
|
batch_size (int): Batch size used in inference. |
|
show_progress (bool, optional): Whether to show prediction progress with a |
|
progress bar. Defaults to True. |
|
""" |
|
|
|
try: |
|
from osgeo import gdal |
|
except: |
|
import gdal |
|
|
|
if isinstance(block_size, int): |
|
block_size = (block_size, block_size) |
|
elif isinstance(block_size, (tuple, list)) and len(block_size) == 2: |
|
block_size = tuple(block_size) |
|
else: |
|
raise ValueError( |
|
"`block_size` must be a tuple/list of length 2 or an integer.") |
|
if isinstance(overlap, int): |
|
overlap = (overlap, overlap) |
|
elif isinstance(overlap, (tuple, list)) and len(overlap) == 2: |
|
overlap = tuple(overlap) |
|
else: |
|
raise ValueError( |
|
"`overlap` must be a tuple/list of length 2 or an integer.") |
|
|
|
step = np.array( |
|
block_size, dtype=np.int32) - np.array( |
|
overlap, dtype=np.int32) |
|
if step[0] == 0 or step[1] == 0: |
|
raise ValueError("`block_size` and `overlap` should not be equal.") |
|
|
|
if isinstance(img_file, tuple): |
|
if len(img_file) != 2: |
|
raise ValueError("Tuple `img_file` must have the length of two.") |
|
# Assume that two input images have the same size |
|
src_data = gdal.Open(img_file[0]) |
|
src2_data = gdal.Open(img_file[1]) |
|
# Output name is the same as the name of the first image |
|
file_name = osp.basename(osp.normpath(img_file[0])) |
|
else: |
|
src_data = gdal.Open(img_file) |
|
file_name = osp.basename(osp.normpath(img_file)) |
|
|
|
# Get size of original raster |
|
width = src_data.RasterXSize |
|
height = src_data.RasterYSize |
|
bands = src_data.RasterCount |
|
|
|
# XXX: GDAL read behavior conforms to paddlers.transforms.decode_image(read_raw=True) |
|
# except for SAR images. |
|
if bands == 1: |
|
logging.warning( |
|
f"Detected `bands=1`. Please note that currently `slider_predict()` does not properly handle SAR images." |
|
) |
|
|
|
if block_size[0] > width or block_size[1] > height: |
|
raise ValueError("`block_size` should not be larger than image size.") |
|
|
|
driver = gdal.GetDriverByName("GTiff") |
|
if not osp.exists(save_dir): |
|
os.makedirs(save_dir) |
|
# Replace extension name with '.tif' |
|
file_name = osp.splitext(file_name)[0] + ".tif" |
|
save_file = osp.join(save_dir, file_name) |
|
dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte) |
|
|
|
# Set meta-information |
|
dst_data.SetGeoTransform(src_data.GetGeoTransform()) |
|
dst_data.SetProjection(src_data.GetProjection()) |
|
|
|
# Initialize raster with `invalid_value` |
|
band = dst_data.GetRasterBand(1) |
|
band.WriteArray( |
|
np.full( |
|
(height, width), fill_value=invalid_value, dtype="uint8")) |
|
|
|
if overlap == (0, 0) or block_size == (width, height): |
|
# When there is no overlap or the whole image is used as input, |
|
# use 'keep_last' strategy as it introduces least overheads |
|
merge_strategy = 'keep_last' |
|
|
|
if merge_strategy == 'keep_first': |
|
overlap_processor = KeepFirstProcessor( |
|
height, |
|
width, |
|
*block_size[::-1], |
|
*step[::-1], |
|
band, |
|
inval=invalid_value) |
|
elif merge_strategy == 'keep_last': |
|
overlap_processor = KeepLastProcessor(height, width, *block_size[::-1], |
|
*step[::-1]) |
|
elif merge_strategy == 'accum': |
|
overlap_processor = AccumProcessor(height, width, *block_size[::-1], |
|
*step[::-1]) |
|
else: |
|
raise ValueError("{} is not a supported stragegy for block merging.". |
|
format(merge_strategy)) |
|
|
|
xsize, ysize = block_size |
|
num_blocks = math.ceil(height / step[1]) * math.ceil(width / step[0]) |
|
cnt = 0 |
|
if show_progress: |
|
pb = tqdm(total=num_blocks) |
|
batch_data = [] |
|
batch_offsets = [] |
|
for yoff in range(0, height, step[1]): |
|
for xoff in range(0, width, step[0]): |
|
if xoff + xsize > width: |
|
xoff = width - xsize |
|
is_end_of_row = True |
|
else: |
|
is_end_of_row = False |
|
if yoff + ysize > height: |
|
yoff = height - ysize |
|
is_end_of_col = True |
|
else: |
|
is_end_of_col = False |
|
|
|
# Read |
|
im = read_block(src_data, xoff, yoff, xsize, ysize) |
|
|
|
if isinstance(img_file, tuple): |
|
im2 = read_block(src2_data, xoff, yoff, xsize, ysize) |
|
batch_data.append((im, im2)) |
|
else: |
|
batch_data.append(im) |
|
|
|
batch_offsets.append((xoff, yoff)) |
|
|
|
len_batch = len(batch_data) |
|
|
|
if is_end_of_row and is_end_of_col and len_batch < batch_size: |
|
# Pad `batch_data` by repeating the last element |
|
batch_data = batch_data + [batch_data[-1]] * (batch_size - |
|
len_batch) |
|
# While keeping `len(batch_offsets)` the number of valid elements in the batch |
|
|
|
if len(batch_data) == batch_size: |
|
# Predict |
|
batch_out = predict_func(batch_data, transforms=transforms) |
|
|
|
for out, (xoff_, yoff_) in zip(batch_out, batch_offsets): |
|
# Get processed result |
|
pred = overlap_processor.process_pred(out, xoff_, yoff_) |
|
# Write to file |
|
band.WriteArray(pred, xoff_, yoff_) |
|
|
|
dst_data.FlushCache() |
|
batch_data.clear() |
|
batch_offsets.clear() |
|
|
|
cnt += 1 |
|
|
|
if show_progress: |
|
pb.update(1) |
|
pb.set_description("{} out of {} blocks processed.".format( |
|
cnt, num_blocks)) |
|
|
|
dst_data = None |
|
logging.info("GeoTiff file saved in {}.".format(save_file))
|
|
|