You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

100 lines
3.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from paddle.optimizer.lr import LRScheduler, MultiStepDecay, LambdaDecay
from .builder import LRSCHEDULERS
LRSCHEDULERS.register(MultiStepDecay)
@LRSCHEDULERS.register()
class NonLinearDecay(LRScheduler):
def __init__(self, learning_rate, lr_decay, last_epoch=-1):
self.lr_decay = lr_decay
super(NonLinearDecay, self).__init__(learning_rate, last_epoch)
def get_lr(self):
lr = self.base_lr / (1.0 + self.lr_decay * self.last_epoch)
return lr
@LRSCHEDULERS.register()
class LinearDecay(LambdaDecay):
def __init__(self, learning_rate, start_epoch, decay_epochs,
iters_per_epoch):
def lambda_rule(epoch):
epoch = epoch // iters_per_epoch
lr_l = 1.0 - max(0, epoch + 1 -
start_epoch) / float(decay_epochs + 1)
return lr_l
super().__init__(learning_rate, lambda_rule)
@LRSCHEDULERS.register()
class CosineAnnealingRestartLR(LRScheduler):
""" Cosine annealing with restarts learning rate scheme.
An example config from configs/edvr_l_blur_wo_tsa.yaml:
learning_rate: !!float 4e-4
periods: [150000, 150000, 150000, 150000]
restart_weights: [1, 1, 1, 1]
eta_min: !!float 1e-7
It has four cycles, each has 150000 iterations. At 150000th, 300000th,
450000th, the scheduler will restart with the weights in restart_weights.
Args:
learning_rate (float): Base learning rate.
periods (list): Period for each cosine anneling cycle.
restart_weights (list): Restart weights at each restart iteration.
Default: [1].
eta_min (float): The mimimum learning rate of the cosine anneling cycle. Default: 0.
last_epoch (int): Used in paddle.nn._LRScheduler. Default: -1.
"""
def __init__(self,
learning_rate,
periods,
restart_weights=[1],
eta_min=0,
last_epoch=-1):
self.periods = periods
self.restart_weights = restart_weights
self.eta_min = eta_min
assert (len(self.periods) == len(self.restart_weights)
), 'periods and restart_weights should have the same length.'
self.cumulative_period = [
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
]
super(CosineAnnealingRestartLR, self).__init__(learning_rate,
last_epoch)
def get_lr(self):
for i, period in enumerate(self.cumulative_period):
if self.last_epoch <= period:
index = i
break
current_weight = self.restart_weights[index]
nearest_restart = 0 if index == 0 else self.cumulative_period[index - 1]
current_period = self.periods[index]
lr = self.eta_min + current_weight * 0.5 * (
self.base_lr - self.eta_min) * (1 + math.cos(math.pi * (
(self.last_epoch - nearest_restart) / current_period)))
return lr