You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

102 lines
2.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from enum import Enum
import numpy as np
import cv2
from .utils import *
import sys
class LandmarksType(Enum):
"""Enum class defining the type of landmarks to detect.
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``_2halfD`` - this points represent the projection of the 3D points into 3D
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
"""
_2D = 1
_2halfD = 2
_3D = 3
class NetworkSize(Enum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
def __new__(cls, value):
member = object.__new__(cls)
member._value_ = value
return member
def __int__(self):
return self.value
class FaceAlignment:
def __init__(self,
landmarks_type,
network_size=NetworkSize.LARGE,
flip_input=False,
face_detector='sfd',
verbose=False):
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
network_size = int(network_size)
# Get the face detector
face_detector_module = __import__(
'ppgan.faceutils.face_detection.detection.' + face_detector,
globals(), locals(), [face_detector], 0)
self.face_detector = face_detector_module.FaceDetector(verbose=verbose)
def get_detections_for_batch(self, images):
images = images[..., ::-1]
detected_faces = self.face_detector.detect_from_batch(images.copy())
results = []
for i, d in enumerate(detected_faces):
if len(d) == 0:
results.append(None)
continue
d = d[0]
d = np.clip(d, 0, None)
x1, y1, x2, y2 = map(int, d[:4])
results.append((x1, y1, x2, y2))
return results
def get_detections_for_image(self, images):
images = images[..., ::-1]
detected_faces = self.face_detector.detect_from_batch(images.copy())
results = []
for i, d in enumerate(detected_faces[0]):
if len(d) == 0:
results.append(None)
continue
d = np.clip(d, 0, None)
x1, y1, x2, y2 = map(int, d[:-1])
results.append((x1, y1, x2, y2))
return results