You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

104 lines
3.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import cv2
import os.path
import numpy as np
import paddle
from .base_dataset import BaseDataset
from .image_folder import ImageFolder
from .builder import DATASETS
from .preprocess.builder import build_transforms
@DATASETS.register()
class AnimeGANV2Dataset(paddle.io.Dataset):
"""
"""
def __init__(self,
dataroot,
style,
transform_real=None,
transform_anime=None,
transform_gray=None):
"""Initialize this dataset class.
Args:
dataroot (dict): Directory of dataset.
"""
self.root = dataroot
self.style = style
self.transform_real = build_transforms(transform_real)
self.transform_anime = build_transforms(transform_anime)
self.transform_gray = build_transforms(transform_gray)
self.real_root = os.path.join(self.root, 'train_photo')
self.anime_root = os.path.join(self.root, f'{self.style}', 'style')
self.smooth_root = os.path.join(self.root, f'{self.style}', 'smooth')
self.real = ImageFolder(
self.real_root, transform=self.transform_real, loader=self.loader)
self.anime = ImageFolder(
self.anime_root, transform=self.transform_anime, loader=self.loader)
self.anime_gray = ImageFolder(
self.anime_root, transform=self.transform_gray, loader=self.loader)
self.smooth_gray = ImageFolder(
self.smooth_root, transform=self.transform_gray, loader=self.loader)
self.sizes = [
len(fold) for fold in [self.real, self.anime, self.smooth_gray]
]
self.size = max(self.sizes)
self.reshuffle()
@staticmethod
def loader(path):
return cv2.cvtColor(
cv2.imread(
path, flags=cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
def reshuffle(self):
indexs = []
for cur_size in self.sizes:
x = np.arange(0, cur_size)
np.random.shuffle(x)
if cur_size != self.size:
pad_num = self.size - cur_size
pad = np.random.choice(cur_size, pad_num, replace=True)
x = np.concatenate((x, pad))
np.random.shuffle(x)
indexs.append(x.tolist())
self.indexs = list(zip(*indexs))
def __getitem__(self, index):
try:
index = self.indexs.pop()
except IndexError as e:
self.reshuffle()
index = self.indexs.pop()
real_idx, anime_idx, smooth_idx = index
return {
'real': self.real[real_idx],
'anime': self.anime[anime_idx],
'anime_gray': self.anime_gray[anime_idx],
'smooth_gray': self.smooth_gray[smooth_idx]
}
def __len__(self):
return self.size