You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
380 lines
13 KiB
380 lines
13 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os.path as osp |
|
import re |
|
import platform |
|
from collections import OrderedDict |
|
from functools import partial, wraps |
|
|
|
import numpy as np |
|
|
|
__all__ = ['build_input_from_file'] |
|
|
|
|
|
def norm_path(path): |
|
win_sep = "\\" |
|
other_sep = "/" |
|
if platform.system() == "Windows": |
|
path = win_sep.join(path.split(other_sep)) |
|
else: |
|
path = other_sep.join(path.split(win_sep)) |
|
return path |
|
|
|
|
|
def get_full_path(p, prefix=''): |
|
p = norm_path(p) |
|
return osp.join(prefix, p) |
|
|
|
|
|
def silent(func): |
|
def _do_nothing(*args, **kwargs): |
|
pass |
|
|
|
@wraps(func) |
|
def _wrapper(*args, **kwargs): |
|
import builtins |
|
print = builtins.print |
|
builtins.print = _do_nothing |
|
ret = func(*args, **kwargs) |
|
builtins.print = print |
|
return ret |
|
|
|
return _wrapper |
|
|
|
|
|
class ConstrSample(object): |
|
def __init__(self, prefix, label_list): |
|
super().__init__() |
|
self.prefix = prefix |
|
self.label_list_obj = self.read_label_list(label_list) |
|
self.get_full_path = partial(get_full_path, prefix=self.prefix) |
|
|
|
def read_label_list(self, label_list): |
|
if label_list is None: |
|
return None |
|
cname2cid = OrderedDict() |
|
label_id = 0 |
|
with open(label_list, 'r') as f: |
|
for line in f: |
|
cname2cid[line.strip()] = label_id |
|
label_id += 1 |
|
return cname2cid |
|
|
|
def __call__(self, *parts): |
|
raise NotImplementedError |
|
|
|
|
|
class ConstrSegSample(ConstrSample): |
|
def __call__(self, im_path, mask_path): |
|
return { |
|
'image': self.get_full_path(im_path), |
|
'mask': self.get_full_path(mask_path) |
|
} |
|
|
|
|
|
class ConstrCdSample(ConstrSample): |
|
def __call__(self, im1_path, im2_path, mask_path, *aux_mask_paths): |
|
sample = { |
|
'image_t1': self.get_full_path(im1_path), |
|
'image_t2': self.get_full_path(im2_path), |
|
'mask': self.get_full_path(mask_path) |
|
} |
|
if len(aux_mask_paths) > 0: |
|
sample['aux_masks'] = [ |
|
self.get_full_path(p) for p in aux_mask_paths |
|
] |
|
return sample |
|
|
|
|
|
class ConstrClasSample(ConstrSample): |
|
def __call__(self, im_path, label): |
|
return {'image': self.get_full_path(im_path), 'label': int(label)} |
|
|
|
|
|
class ConstrDetSample(ConstrSample): |
|
def __init__(self, prefix, label_list): |
|
super().__init__(prefix, label_list) |
|
self.ct = 0 |
|
|
|
def __call__(self, im_path, ann_path): |
|
im_path = self.get_full_path(im_path) |
|
ann_path = self.get_full_path(ann_path) |
|
# TODO: Precisely recognize the annotation format |
|
if ann_path.endswith('.json'): |
|
im_dir = im_path |
|
return self._parse_coco_files(im_dir, ann_path) |
|
elif ann_path.endswith('.xml'): |
|
return self._parse_voc_files(im_path, ann_path) |
|
else: |
|
raise ValueError("Cannot recognize the annotation format") |
|
|
|
def _parse_voc_files(self, im_path, ann_path): |
|
import xml.etree.ElementTree as ET |
|
|
|
cname2cid = self.label_list_obj |
|
tree = ET.parse(ann_path) |
|
# The xml file must contain id. |
|
if tree.find('id') is None: |
|
im_id = np.asarray([self.ct]) |
|
else: |
|
self.ct = int(tree.find('id').text) |
|
im_id = np.asarray([int(tree.find('id').text)]) |
|
pattern = re.compile('<size>', re.IGNORECASE) |
|
size_tag = pattern.findall(str(ET.tostringlist(tree.getroot()))) |
|
if len(size_tag) > 0: |
|
size_tag = size_tag[0][1:-1] |
|
size_element = tree.find(size_tag) |
|
pattern = re.compile('<width>', re.IGNORECASE) |
|
width_tag = pattern.findall(str(ET.tostringlist(size_element)))[0][ |
|
1:-1] |
|
im_w = float(size_element.find(width_tag).text) |
|
pattern = re.compile('<height>', re.IGNORECASE) |
|
height_tag = pattern.findall(str(ET.tostringlist(size_element)))[0][ |
|
1:-1] |
|
im_h = float(size_element.find(height_tag).text) |
|
else: |
|
im_w = 0 |
|
im_h = 0 |
|
|
|
pattern = re.compile('<object>', re.IGNORECASE) |
|
obj_match = pattern.findall(str(ET.tostringlist(tree.getroot()))) |
|
if len(obj_match) > 0: |
|
obj_tag = obj_match[0][1:-1] |
|
objs = tree.findall(obj_tag) |
|
else: |
|
objs = list() |
|
|
|
num_bbox, i = len(objs), 0 |
|
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32) |
|
gt_class = np.zeros((num_bbox, 1), dtype=np.int32) |
|
gt_score = np.zeros((num_bbox, 1), dtype=np.float32) |
|
is_crowd = np.zeros((num_bbox, 1), dtype=np.int32) |
|
difficult = np.zeros((num_bbox, 1), dtype=np.int32) |
|
for obj in objs: |
|
pattern = re.compile('<name>', re.IGNORECASE) |
|
name_tag = pattern.findall(str(ET.tostringlist(obj)))[0][1:-1] |
|
cname = obj.find(name_tag).text.strip() |
|
pattern = re.compile('<difficult>', re.IGNORECASE) |
|
diff_tag = pattern.findall(str(ET.tostringlist(obj))) |
|
if len(diff_tag) == 0: |
|
_difficult = 0 |
|
else: |
|
diff_tag = diff_tag[0][1:-1] |
|
try: |
|
_difficult = int(obj.find(diff_tag).text) |
|
except Exception: |
|
_difficult = 0 |
|
pattern = re.compile('<bndbox>', re.IGNORECASE) |
|
box_tag = pattern.findall(str(ET.tostringlist(obj))) |
|
if len(box_tag) == 0: |
|
continue |
|
box_tag = box_tag[0][1:-1] |
|
box_element = obj.find(box_tag) |
|
pattern = re.compile('<xmin>', re.IGNORECASE) |
|
xmin_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: |
|
-1] |
|
x1 = float(box_element.find(xmin_tag).text) |
|
pattern = re.compile('<ymin>', re.IGNORECASE) |
|
ymin_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: |
|
-1] |
|
y1 = float(box_element.find(ymin_tag).text) |
|
pattern = re.compile('<xmax>', re.IGNORECASE) |
|
xmax_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: |
|
-1] |
|
x2 = float(box_element.find(xmax_tag).text) |
|
pattern = re.compile('<ymax>', re.IGNORECASE) |
|
ymax_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: |
|
-1] |
|
y2 = float(box_element.find(ymax_tag).text) |
|
x1 = max(0, x1) |
|
y1 = max(0, y1) |
|
if im_w > 0.5 and im_h > 0.5: |
|
x2 = min(im_w - 1, x2) |
|
y2 = min(im_h - 1, y2) |
|
|
|
if not (x2 >= x1 and y2 >= y1): |
|
continue |
|
|
|
gt_bbox[i, :] = [x1, y1, x2, y2] |
|
gt_class[i, 0] = cname2cid[cname] |
|
gt_score[i, 0] = 1. |
|
is_crowd[i, 0] = 0 |
|
difficult[i, 0] = _difficult |
|
i += 1 |
|
|
|
gt_bbox = gt_bbox[:i, :] |
|
gt_class = gt_class[:i, :] |
|
gt_score = gt_score[:i, :] |
|
is_crowd = is_crowd[:i, :] |
|
difficult = difficult[:i, :] |
|
|
|
im_info = { |
|
'im_id': im_id, |
|
'image_shape': np.array( |
|
[im_h, im_w], dtype=np.int32) |
|
} |
|
label_info = { |
|
'is_crowd': is_crowd, |
|
'gt_class': gt_class, |
|
'gt_bbox': gt_bbox, |
|
'gt_score': gt_score, |
|
'difficult': difficult |
|
} |
|
|
|
self.ct += 1 |
|
return {'image': im_path, ** im_info, ** label_info} |
|
|
|
@silent |
|
def _parse_coco_files(self, im_dir, ann_path): |
|
from pycocotools.coco import COCO |
|
|
|
coco = COCO(ann_path) |
|
img_ids = coco.getImgIds() |
|
img_ids.sort() |
|
|
|
samples = [] |
|
for img_id in img_ids: |
|
img_anno = coco.loadImgs([img_id])[0] |
|
im_fname = img_anno['file_name'] |
|
im_w = float(img_anno['width']) |
|
im_h = float(img_anno['height']) |
|
|
|
im_path = osp.join(im_dir, im_fname) if im_dir else im_fname |
|
|
|
im_info = { |
|
'image': im_path, |
|
'im_id': np.array([img_id]), |
|
'image_shape': np.array( |
|
[im_h, im_w], dtype=np.int32) |
|
} |
|
|
|
ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False) |
|
instances = coco.loadAnns(ins_anno_ids) |
|
|
|
is_crowds = [] |
|
gt_classes = [] |
|
gt_bboxs = [] |
|
gt_scores = [] |
|
difficults = [] |
|
|
|
for inst in instances: |
|
# Check gt bbox |
|
if inst.get('ignore', False): |
|
continue |
|
if 'bbox' not in inst.keys(): |
|
continue |
|
else: |
|
if not any(np.array(inst['bbox'])): |
|
continue |
|
|
|
# Read box |
|
x1, y1, box_w, box_h = inst['bbox'] |
|
x2 = x1 + box_w |
|
y2 = y1 + box_h |
|
eps = 1e-5 |
|
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps: |
|
inst['clean_bbox'] = [ |
|
round(float(x), 3) for x in [x1, y1, x2, y2] |
|
] |
|
|
|
is_crowds.append([inst['iscrowd']]) |
|
gt_classes.append([inst['category_id']]) |
|
gt_bboxs.append(inst['clean_bbox']) |
|
gt_scores.append([1.]) |
|
difficults.append([0]) |
|
|
|
label_info = { |
|
'is_crowd': np.array(is_crowds), |
|
'gt_class': np.array(gt_classes), |
|
'gt_bbox': np.array(gt_bboxs).astype(np.float32), |
|
'gt_score': np.array(gt_scores).astype(np.float32), |
|
'difficult': np.array(difficults), |
|
} |
|
|
|
samples.append({ ** im_info, ** label_info}) |
|
|
|
return samples |
|
|
|
|
|
class ConstrResSample(ConstrSample): |
|
def __init__(self, prefix, label_list, sr_factor=None): |
|
super().__init__(prefix, label_list) |
|
self.sr_factor = sr_factor |
|
|
|
def __call__(self, src_path, tar_path): |
|
sample = { |
|
'image': self.get_full_path(src_path), |
|
'target': self.get_full_path(tar_path) |
|
} |
|
if self.sr_factor is not None: |
|
sample['sr_factor'] = self.sr_factor |
|
return sample |
|
|
|
|
|
def build_input_from_file(file_list, |
|
prefix='', |
|
task='auto', |
|
label_list=None, |
|
**kwargs): |
|
""" |
|
Construct a list of dictionaries from file. Each dict in the list can be used as the input to paddlers.transforms.Transform objects. |
|
|
|
Args: |
|
file_list (str): Path of file list. |
|
prefix (str, optional): A nonempty `prefix` specifies the directory that stores the images and annotation files. Default: ''. |
|
task (str, optional): Supported values are 'seg', 'det', 'cd', 'clas', 'res', and 'auto'. When `task` is set to 'auto', |
|
automatically determine the task based on the input. Default: 'auto'. |
|
label_list (str|None, optional): Path of label_list. Default: None. |
|
|
|
Returns: |
|
list: List of samples. |
|
""" |
|
|
|
def _determine_task(parts): |
|
task = 'unknown' |
|
if len(parts) in (3, 5): |
|
task = 'cd' |
|
elif len(parts) == 2: |
|
if parts[1].isdigit(): |
|
task = 'clas' |
|
elif parts[1].endswith('.xml'): |
|
task = 'det' |
|
if task == 'unknown': |
|
raise RuntimeError( |
|
"Cannot automatically determine the task type. Please specify `task` manually." |
|
) |
|
return task |
|
|
|
if task not in ('seg', 'det', 'cd', 'clas', 'res', 'auto'): |
|
raise ValueError("Invalid value of `task`") |
|
|
|
samples = [] |
|
ctor = None |
|
with open(file_list, 'r') as f: |
|
for line in f: |
|
line = line.strip() |
|
parts = line.split() |
|
if task == 'auto': |
|
task = _determine_task(parts) |
|
if ctor is None: |
|
ctor_class = globals()['Constr' + task.capitalize() + 'Sample'] |
|
ctor = ctor_class(prefix, label_list, **kwargs) |
|
sample = ctor(*parts) |
|
if isinstance(sample, list): |
|
samples.extend(sample) |
|
else: |
|
samples.append(sample) |
|
|
|
return samples
|
|
|