You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
6.4 KiB
158 lines
6.4 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os.path as osp |
|
import yaml |
|
|
|
import numpy as np |
|
import paddle |
|
import paddleslim |
|
|
|
import paddlers |
|
import paddlers.utils.logging as logging |
|
from paddlers.transforms import build_transforms |
|
|
|
|
|
def load_rcnn_inference_model(model_dir): |
|
paddle.enable_static() |
|
exe = paddle.static.Executor(paddle.CPUPlace()) |
|
path_prefix = osp.join(model_dir, "model") |
|
prog, _, _ = paddle.static.load_inference_model(path_prefix, exe) |
|
paddle.disable_static() |
|
extra_var_info = paddle.load(osp.join(model_dir, "model.pdiparams.info")) |
|
|
|
net_state_dict = dict() |
|
static_state_dict = dict() |
|
|
|
for name, var in prog.state_dict().items(): |
|
static_state_dict[name] = np.array(var) |
|
for var_name in static_state_dict: |
|
if var_name not in extra_var_info: |
|
continue |
|
structured_name = extra_var_info[var_name].get('structured_name', None) |
|
if structured_name is None: |
|
continue |
|
net_state_dict[structured_name] = static_state_dict[var_name] |
|
return net_state_dict |
|
|
|
|
|
def load_model(model_dir, **params): |
|
""" |
|
Load saved model from a given directory. |
|
|
|
Args: |
|
model_dir(str): The directory where the model is saved. |
|
|
|
Returns: |
|
The model loaded from the directory. |
|
""" |
|
|
|
if not osp.exists(model_dir): |
|
logging.error("Directory '{}' does not exist!".format(model_dir)) |
|
if not osp.exists(osp.join(model_dir, "model.yml")): |
|
raise Exception("There is no file named model.yml in {}.".format( |
|
model_dir)) |
|
|
|
with open(osp.join(model_dir, "model.yml")) as f: |
|
model_info = yaml.load(f.read(), Loader=yaml.Loader) |
|
|
|
status = model_info['status'] |
|
with_net = params.get('with_net', True) |
|
if not with_net: |
|
assert status == 'Infer', \ |
|
"Only exported models can be deployed for inference, but current model status is {}.".format(status) |
|
|
|
model_type = model_info['_Attributes']['model_type'] |
|
mod = getattr(paddlers.tasks, model_type) |
|
if not hasattr(mod, model_info['Model']): |
|
raise Exception("There is no {} attribute in {}.".format(model_info[ |
|
'Model'], mod)) |
|
if 'model_name' in model_info['_init_params']: |
|
del model_info['_init_params']['model_name'] |
|
|
|
model_info['_init_params'].update({'with_net': with_net}) |
|
|
|
with paddle.utils.unique_name.guard(): |
|
if 'raw_params' not in model_info: |
|
logging.warning( |
|
"Cannot find raw_params. Default arguments will be used to construct the model." |
|
) |
|
params = model_info.pop('raw_params', {}) |
|
params.update(model_info['_init_params']) |
|
model = getattr(mod, model_info['Model'])(**params) |
|
if with_net: |
|
if status == 'Pruned' or osp.exists( |
|
osp.join(model_dir, "prune.yml")): |
|
with open(osp.join(model_dir, "prune.yml")) as f: |
|
pruning_info = yaml.load(f.read(), Loader=yaml.Loader) |
|
inputs = pruning_info['pruner_inputs'] |
|
if model.model_type == 'detector': |
|
inputs = [{ |
|
k: paddle.to_tensor(v) |
|
for k, v in inputs.items() |
|
}] |
|
model.net.eval() |
|
model.pruner = getattr(paddleslim, pruning_info['pruner'])( |
|
model.net, inputs=inputs) |
|
model.pruning_ratios = pruning_info['pruning_ratios'] |
|
model.pruner.prune_vars( |
|
ratios=model.pruning_ratios, |
|
axis=paddleslim.dygraph.prune.filter_pruner.FILTER_DIM) |
|
|
|
if status == 'Quantized' or osp.exists( |
|
osp.join(model_dir, "quant.yml")): |
|
with open(osp.join(model_dir, "quant.yml")) as f: |
|
quant_info = yaml.load(f.read(), Loader=yaml.Loader) |
|
model.quant_config = quant_info['quant_config'] |
|
model.quantizer = paddleslim.QAT(model.quant_config) |
|
model.quantizer.quantize(model.net) |
|
|
|
if status == 'Infer': |
|
if osp.exists(osp.join(model_dir, "quant.yml")): |
|
logging.error( |
|
"Exported quantized model can not be loaded, because quant.yml is not found.", |
|
exit=True) |
|
model.net = model._build_inference_net() |
|
if model_info['Model'] in ['FasterRCNN', 'MaskRCNN']: |
|
net_state_dict = load_rcnn_inference_model(model_dir) |
|
else: |
|
net_state_dict = paddle.load(osp.join(model_dir, 'model')) |
|
if model.model_type in [ |
|
'classifier', 'segmenter', 'change_detector' |
|
]: |
|
# When exporting a classifier, segmenter, or change_detector, |
|
# InferNet (or InferCDNet) is defined to append softmax and argmax operators to the model, |
|
# so the parameter names all start with 'net.' |
|
new_net_state_dict = {} |
|
for k, v in net_state_dict.items(): |
|
new_net_state_dict['net.' + k] = v |
|
net_state_dict = new_net_state_dict |
|
|
|
else: |
|
net_state_dict = paddle.load( |
|
osp.join(model_dir, 'model.pdparams')) |
|
model.net.set_state_dict(net_state_dict) |
|
|
|
if 'Transforms' in model_info: |
|
model.test_transforms = build_transforms(model_info['Transforms']) |
|
|
|
if '_Attributes' in model_info: |
|
for k, v in model_info['_Attributes'].items(): |
|
if k in model.__dict__: |
|
model.__dict__[k] = v |
|
|
|
logging.info("Model[{}] loaded.".format(model_info['Model'])) |
|
model.status = status |
|
|
|
return model
|
|
|