You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
4.6 KiB
143 lines
4.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image as PILImage |
|
|
|
|
|
def visualize(image, result, color_map, save_dir=None, weight=0.6): |
|
""" |
|
Convert predict result to color image, and save added image. |
|
|
|
Args: |
|
image (str): The path of origin image. |
|
result (np.ndarray): The predict result of image. |
|
color_map (list): The color used to save the prediction results. |
|
save_dir (str): The directory for saving visual image. Default: None. |
|
weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6 |
|
|
|
Returns: |
|
vis_result (np.ndarray): If `save_dir` is None, return the visualized result. |
|
""" |
|
|
|
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] |
|
color_map = np.array(color_map).astype("uint8") |
|
# Use OpenCV LUT for color mapping |
|
c1 = cv2.LUT(result, color_map[:, 0]) |
|
c2 = cv2.LUT(result, color_map[:, 1]) |
|
c3 = cv2.LUT(result, color_map[:, 2]) |
|
pseudo_img = np.dstack((c3, c2, c1)) |
|
|
|
im = cv2.imread(image) |
|
vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0) |
|
|
|
if save_dir is not None: |
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
image_name = os.path.split(image)[-1] |
|
out_path = os.path.join(save_dir, image_name) |
|
cv2.imwrite(out_path, vis_result) |
|
else: |
|
return vis_result |
|
|
|
|
|
def get_pseudo_color_map(pred, color_map=None): |
|
""" |
|
Get the pseudo color image. |
|
|
|
Args: |
|
pred (numpy.ndarray): the origin predicted image. |
|
color_map (list, optional): the palette color map. Default: None, |
|
use paddleseg's default color map. |
|
|
|
Returns: |
|
(numpy.ndarray): the pseduo image. |
|
""" |
|
pred_mask = PILImage.fromarray(pred.astype(np.uint8), mode='P') |
|
if color_map is None: |
|
color_map = get_color_map_list(256) |
|
pred_mask.putpalette(color_map) |
|
return pred_mask |
|
|
|
|
|
def get_color_map_list(num_classes, custom_color=None): |
|
""" |
|
Returns the color map for visualizing the segmentation mask, |
|
which can support arbitrary number of classes. |
|
|
|
Args: |
|
num_classes (int): Number of classes. |
|
custom_color (list, optional): Save images with a custom color map. Default: None, use paddleseg's default color map. |
|
|
|
Returns: |
|
(list). The color map. |
|
""" |
|
|
|
num_classes += 1 |
|
color_map = num_classes * [0, 0, 0] |
|
for i in range(0, num_classes): |
|
j = 0 |
|
lab = i |
|
while lab: |
|
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) |
|
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) |
|
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) |
|
j += 1 |
|
lab >>= 3 |
|
color_map = color_map[3:] |
|
|
|
if custom_color: |
|
color_map[:len(custom_color)] = custom_color |
|
return color_map |
|
|
|
|
|
def paste_images(image_list): |
|
""" |
|
Paste all image to a image. |
|
Args: |
|
image_list (List or Tuple): The images to be pasted and their size are the same. |
|
Returns: |
|
result_img (PIL.Image): The pasted image. |
|
""" |
|
assert isinstance(image_list, |
|
(list, tuple)), "image_list should be a list or tuple" |
|
assert len( |
|
image_list) > 1, "The length of image_list should be greater than 1" |
|
|
|
pil_img_list = [] |
|
for img in image_list: |
|
if isinstance(img, str): |
|
assert os.path.exists(img), "The image is not existed: {}".format( |
|
img) |
|
img = PILImage.open(img) |
|
img = np.array(img) |
|
elif isinstance(img, np.ndarray): |
|
img = PILImage.fromarray(img) |
|
pil_img_list.append(img) |
|
|
|
sample_img = pil_img_list[0] |
|
size = sample_img.size |
|
for img in pil_img_list: |
|
assert size == img.size, "The image size in image_list should be the same" |
|
|
|
width, height = sample_img.size |
|
result_img = PILImage.new(sample_img.mode, |
|
(width * len(pil_img_list), height)) |
|
for i, img in enumerate(pil_img_list): |
|
result_img.paste(img, box=(width * i, 0)) |
|
|
|
return result_img
|
|
|