You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
5.3 KiB
185 lines
5.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image, ImageEnhance |
|
from scipy.ndimage import distance_transform_edt |
|
|
|
|
|
def rescale_size(img_size, target_size): |
|
scale = min( |
|
max(target_size) / max(img_size), min(target_size) / min(img_size)) |
|
rescaled_size = [round(i * scale) for i in img_size] |
|
return rescaled_size, scale |
|
|
|
|
|
def normalize(im, mean, std): |
|
im = im.astype(np.float32, copy=False) / 255.0 |
|
im -= mean |
|
im /= std |
|
return im |
|
|
|
|
|
def resize(im, target_size=608, interp=cv2.INTER_LINEAR): |
|
if isinstance(target_size, list) or isinstance(target_size, tuple): |
|
w = target_size[0] |
|
h = target_size[1] |
|
else: |
|
w = target_size |
|
h = target_size |
|
im = cv2.resize(im, (w, h), interpolation=interp) |
|
return im |
|
|
|
|
|
def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR): |
|
value = max(im.shape[0], im.shape[1]) |
|
scale = float(long_size) / float(value) |
|
resized_width = int(round(im.shape[1] * scale)) |
|
resized_height = int(round(im.shape[0] * scale)) |
|
|
|
im = cv2.resize( |
|
im, (resized_width, resized_height), interpolation=interpolation) |
|
return im |
|
|
|
|
|
def resize_short(im, short_size=224, interpolation=cv2.INTER_LINEAR): |
|
value = min(im.shape[0], im.shape[1]) |
|
scale = float(short_size) / float(value) |
|
resized_width = int(round(im.shape[1] * scale)) |
|
resized_height = int(round(im.shape[0] * scale)) |
|
|
|
im = cv2.resize( |
|
im, (resized_width, resized_height), interpolation=interpolation) |
|
return im |
|
|
|
|
|
def horizontal_flip(im): |
|
if len(im.shape) == 3: |
|
im = im[:, ::-1, :] |
|
elif len(im.shape) == 2: |
|
im = im[:, ::-1] |
|
return im |
|
|
|
|
|
def vertical_flip(im): |
|
if len(im.shape) == 3: |
|
im = im[::-1, :, :] |
|
elif len(im.shape) == 2: |
|
im = im[::-1, :] |
|
return im |
|
|
|
|
|
def brightness(im, brightness_lower, brightness_upper): |
|
brightness_delta = np.random.uniform(brightness_lower, brightness_upper) |
|
im = ImageEnhance.Brightness(im).enhance(brightness_delta) |
|
return im |
|
|
|
|
|
def contrast(im, contrast_lower, contrast_upper): |
|
contrast_delta = np.random.uniform(contrast_lower, contrast_upper) |
|
im = ImageEnhance.Contrast(im).enhance(contrast_delta) |
|
return im |
|
|
|
|
|
def saturation(im, saturation_lower, saturation_upper): |
|
saturation_delta = np.random.uniform(saturation_lower, saturation_upper) |
|
im = ImageEnhance.Color(im).enhance(saturation_delta) |
|
return im |
|
|
|
|
|
def hue(im, hue_lower, hue_upper): |
|
hue_delta = np.random.uniform(hue_lower, hue_upper) |
|
im = np.array(im.convert('HSV')) |
|
im[:, :, 0] = im[:, :, 0] + hue_delta |
|
im = Image.fromarray(im, mode='HSV').convert('RGB') |
|
return im |
|
|
|
|
|
def sharpness(im, sharpness_lower, sharpness_upper): |
|
sharpness_delta = np.random.uniform(sharpness_lower, sharpness_upper) |
|
im = ImageEnhance.Sharpness(im).enhance(sharpness_delta) |
|
return im |
|
|
|
|
|
def rotate(im, rotate_lower, rotate_upper): |
|
rotate_delta = np.random.uniform(rotate_lower, rotate_upper) |
|
im = im.rotate(int(rotate_delta)) |
|
return im |
|
|
|
|
|
def mask_to_onehot(mask, num_classes): |
|
""" |
|
Convert a mask (H, W) to onehot (K, H, W). |
|
|
|
Args: |
|
mask (np.ndarray): Label mask with shape (H, W) |
|
num_classes (int): Number of classes. |
|
|
|
Returns: |
|
np.ndarray: Onehot mask with shape(K, H, W). |
|
""" |
|
_mask = [mask == i for i in range(num_classes)] |
|
_mask = np.array(_mask).astype(np.uint8) |
|
return _mask |
|
|
|
|
|
def onehot_to_binary_edge(mask, radius): |
|
""" |
|
Convert a onehot mask (K, H, W) to a edge mask. |
|
|
|
Args: |
|
mask (np.ndarray): Onehot mask with shape (K, H, W) |
|
radius (int|float): Radius of edge. |
|
|
|
Returns: |
|
np.ndarray: Edge mask with shape(H, W). |
|
""" |
|
if radius < 1: |
|
raise ValueError('`radius` should be greater than or equal to 1') |
|
num_classes = mask.shape[0] |
|
|
|
edge = np.zeros(mask.shape[1:]) |
|
# pad borders |
|
mask = np.pad(mask, ((0, 0), (1, 1), (1, 1)), |
|
mode='constant', |
|
constant_values=0) |
|
for i in range(num_classes): |
|
dist = distance_transform_edt(mask[i, :]) + distance_transform_edt( |
|
1.0 - mask[i, :]) |
|
dist = dist[1:-1, 1:-1] |
|
dist[dist > radius] = 0 |
|
edge += dist |
|
|
|
edge = np.expand_dims(edge, axis=0) |
|
edge = (edge > 0).astype(np.uint8) |
|
return edge |
|
|
|
|
|
def mask_to_binary_edge(mask, radius, num_classes): |
|
""" |
|
Convert a segmentic segmentation mask (H, W) to a binary edge mask(H, W). |
|
|
|
Args: |
|
mask (np.ndarray): Label mask with shape (H, W) |
|
radius (int|float): Radius of edge. |
|
num_classes (int): Number of classes. |
|
|
|
Returns: |
|
np.ndarray: Edge mask with shape(H, W). |
|
""" |
|
mask = mask.squeeze() |
|
onehot = mask_to_onehot(mask, num_classes) |
|
edge = onehot_to_binary_edge(onehot, radius) |
|
return edge
|
|
|