You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.1 KiB
137 lines
5.1 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import copy |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from paddlers.models.ppseg.datasets import Dataset |
|
from paddlers.models.ppseg.cvlibs import manager |
|
from paddlers.models.ppseg.transforms import Compose |
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress |
|
from paddlers.models.ppseg.utils import seg_env |
|
import paddlers.models.ppseg.transforms.functional as F |
|
|
|
URL = "https://paddleseg.bj.bcebos.com/dataset/EG1800.zip" |
|
|
|
|
|
@manager.DATASETS.add_component |
|
class EG1800(Dataset): |
|
""" |
|
EG1800 dataset `http://xiaoyongshen.me/webpage_portrait/index.html`. |
|
|
|
Args: |
|
common_transforms (list): A list of common image transformations for two inputs of portrait net. |
|
transforms1 (list): A list of image transformations for the first input of portrait net. |
|
transforms2 (list): A list of image transformations for the second input of portrait net. |
|
dataset_root (str, optional): The EG1800 dataset directory. Default: None. |
|
mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'. |
|
edge (bool, optional): Whether to compute edge while training. Default: False |
|
""" |
|
NUM_CLASSES = 2 |
|
|
|
def __init__(self, |
|
common_transforms, |
|
transforms1, |
|
transforms2, |
|
dataset_root=None, |
|
mode='train', |
|
edge=False): |
|
self.dataset_root = dataset_root |
|
self.common_transforms = Compose(common_transforms) |
|
self.transforms = self.common_transforms |
|
if transforms1 is not None: |
|
self.transforms1 = Compose(transforms1, to_rgb=False) |
|
if transforms2 is not None: |
|
self.transforms2 = Compose(transforms2, to_rgb=False) |
|
mode = mode.lower() |
|
self.ignore_index = 255 |
|
self.mode = mode |
|
self.num_classes = self.NUM_CLASSES |
|
self.input_width = 224 |
|
self.input_height = 224 |
|
|
|
if self.dataset_root is None: |
|
self.dataset_root = download_file_and_uncompress( |
|
url=URL, |
|
savepath=seg_env.DATA_HOME, |
|
extrapath=seg_env.DATA_HOME) |
|
elif not os.path.exists(self.dataset_root): |
|
self.dataset_root = os.path.normpath(self.dataset_root) |
|
savepath, extraname = self.dataset_root.rsplit( |
|
sep=os.path.sep, maxsplit=1) |
|
self.dataset_root = download_file_and_uncompress( |
|
url=URL, |
|
savepath=savepath, |
|
extrapath=savepath, |
|
extraname=extraname) |
|
|
|
if mode == 'train': |
|
path = os.path.join(dataset_root, 'eg1800_train.txt') |
|
else: |
|
path = os.path.join(dataset_root, 'eg1800_test.txt') |
|
with open(path, 'r') as f: |
|
files = f.readlines() |
|
img_files = [ |
|
os.path.join(dataset_root, 'Images', file).strip() for file in files |
|
] |
|
label_files = [ |
|
os.path.join(dataset_root, 'Labels', file).strip() for file in files |
|
] |
|
|
|
self.file_list = [ |
|
[img_path, label_path] |
|
for img_path, label_path in zip(img_files, label_files) |
|
] |
|
pass |
|
|
|
def __getitem__(self, item): |
|
image_path, label_path = self.file_list[item] |
|
im = cv2.imread(image_path) |
|
label = cv2.imread(label_path, 0) |
|
label[label > 1] = 0 |
|
|
|
if self.mode == "val": |
|
common_im, label = self.common_transforms(im=im, label=label) |
|
im = np.float32(common_im[::-1, :, :]) # RGB => BGR |
|
im_aug = copy.deepcopy(im) |
|
else: |
|
common_im, label = self.common_transforms(im=im, label=label) |
|
common_im = np.transpose(common_im, [1, 2, 0]) |
|
# add augmentation |
|
im, _ = self.transforms1(common_im) |
|
im_aug, _ = self.transforms2(common_im) |
|
|
|
im = np.float32(im[::-1, :, :]) # RGB => BGR |
|
im_aug = np.float32(im_aug[::-1, :, :]) # RGB => BGR |
|
|
|
label = cv2.resize( |
|
np.uint8(label), (self.input_width, self.input_height), |
|
interpolation=cv2.INTER_NEAREST) |
|
|
|
# add mask blur |
|
label = np.uint8(cv2.blur(label, (5, 5))) |
|
label[label >= 0.5] = 1 |
|
label[label < 0.5] = 0 |
|
|
|
edge_mask = F.mask_to_binary_edge( |
|
label, radius=4, num_classes=self.num_classes) |
|
edge_mask = np.transpose(edge_mask, [1, 2, 0]).squeeze(axis=-1) |
|
im = np.concatenate([im_aug, im]) |
|
if self.mode == "train": |
|
return im, label, edge_mask |
|
else: |
|
return im, label
|
|
|