You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.8 KiB
168 lines
5.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import numpy as np |
|
from paddle.io import Dataset, DataLoader |
|
import paddle |
|
import paddle.nn as nn |
|
import math |
|
import functools |
|
from paddle.nn import Conv1DTranspose, Conv2DTranspose, Conv3DTranspose, Linear |
|
|
|
|
|
# 处理图片数据:裁切、水平翻转、调整图片数据形状、归一化数据 |
|
def data_transform(img, |
|
resize_w, |
|
resize_h, |
|
load_size=286, |
|
pos=[0, 0, 256, 256], |
|
flip=True, |
|
is_image=True): |
|
if is_image: |
|
resized = img.resize((resize_w, resize_h), Image.BICUBIC) |
|
else: |
|
resized = img.resize((resize_w, resize_h), Image.NEAREST) |
|
croped = resized.crop((pos[0], pos[1], pos[2], pos[3])) |
|
fliped = ImageOps.mirror(croped) if flip else croped |
|
fliped = np.array(fliped) # transform to numpy array |
|
expanded = np.expand_dims(fliped, 2) if len(fliped.shape) < 3 else fliped |
|
transposed = np.transpose(expanded, (2, 0, 1)).astype('float32') |
|
if is_image: |
|
normalized = transposed / 255. * 2. - 1. |
|
else: |
|
normalized = transposed |
|
return normalized |
|
|
|
|
|
# 定义CoCo数据集对象 |
|
class COCODateset(Dataset): |
|
def __init__(self, opt): |
|
super(COCODateset, self).__init__() |
|
inst_dir = opt.dataroot + 'train_inst/' |
|
_, _, inst_list = next(os.walk(inst_dir)) |
|
self.inst_list = np.sort(inst_list) |
|
self.opt = opt |
|
|
|
def __getitem__(self, idx): |
|
ins = Image.open(self.opt.dataroot + 'train_inst/' + self.inst_list[ |
|
idx]) |
|
img = Image.open(self.opt.dataroot + 'train_img/' + self.inst_list[idx] |
|
.replace(".png", ".jpg")) |
|
img = img.convert('RGB') |
|
|
|
w, h = img.size |
|
resize_w, resize_h = 0, 0 |
|
if w < h: |
|
resize_w, resize_h = self.opt.load_size, int(h * |
|
self.opt.load_size / w) |
|
else: |
|
resize_w, resize_h = int(w * self.opt.load_size / |
|
h), self.opt.load_size |
|
left = random.randint(0, resize_w - self.opt.crop_size) |
|
top = random.randint(0, resize_h - self.opt.crop_size) |
|
flip = False |
|
|
|
img = data_transform( |
|
img, |
|
resize_w, |
|
resize_h, |
|
load_size=opt.load_size, |
|
pos=[ |
|
left, top, left + self.opt.crop_size, top + self.opt.crop_size |
|
], |
|
flip=flip, |
|
is_image=True) |
|
ins = data_transform( |
|
ins, |
|
resize_w, |
|
resize_h, |
|
load_size=opt.load_size, |
|
pos=[ |
|
left, top, left + self.opt.crop_size, top + self.opt.crop_size |
|
], |
|
flip=flip, |
|
is_image=False) |
|
|
|
return img, ins, self.inst_list[idx] |
|
|
|
def __len__(self): |
|
return len(self.inst_list) |
|
|
|
|
|
def data_onehot_pro(instance, opt): |
|
shape = instance.shape |
|
nc = opt.label_nc + 1 if opt.contain_dontcare_label \ |
|
else opt.label_nc |
|
shape[1] = nc |
|
semantics = paddle.nn.functional.one_hot(instance.astype('int64'). \ |
|
reshape([opt.batchSize, opt.crop_size, opt.crop_size]), nc). \ |
|
transpose((0, 3, 1, 2)) |
|
|
|
# edge |
|
edge = np.zeros(instance.shape, 'int64') |
|
t = instance.numpy() |
|
edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) |
|
edge[:, :, :, :-1] = edge[:, :, :, :-1] | ( |
|
t[:, :, :, 1:] != t[:, :, :, :-1]) |
|
edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) |
|
edge[:, :, :-1, :] = edge[:, :, :-1, :] | ( |
|
t[:, :, 1:, :] != t[:, :, :-1, :]) |
|
edge = paddle.to_tensor(edge).astype('float32') |
|
|
|
semantics = paddle.concat([semantics, edge], 1) |
|
return semantics |
|
|
|
|
|
# 设置除 spade 以外的归一化层 |
|
def build_norm_layer(norm_type='instance'): |
|
"""Return a normalization layer |
|
|
|
Args: |
|
norm_type (str) -- the name of the normalization layer: batch | instance | none |
|
|
|
For BatchNorm, we do not use learnable affine parameters and track running statistics (mean/stddev). |
|
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. |
|
""" |
|
if norm_type == 'batch': |
|
norm_layer = functools.partial( |
|
nn.BatchNorm2D, weight_attr=False, bias_attr=False) |
|
elif norm_type == 'syncbatch': |
|
norm_layer = functools.partial( |
|
nn.SyncBatchNorm, weight_attr=False, bias_attr=False) |
|
elif norm_type == 'instance': |
|
norm_layer = functools.partial(nn.InstanceNorm2D, ) |
|
elif norm_type == 'spectral': |
|
norm_layer = functools.partial(Spectralnorm) |
|
elif norm_type == 'none': |
|
|
|
def norm_layer(x): |
|
return Identity() |
|
else: |
|
raise NotImplementedError('normalization layer [%s] is not found' % |
|
norm_type) |
|
return norm_layer |
|
|
|
|
|
def simam(x, e_lambda=1e-4): |
|
b, c, h, w = x.shape |
|
n = w * h - 1 |
|
x_minus_mu_square = (x - x.mean(axis=[2, 3], keepdim=True))**2 |
|
y = x_minus_mu_square / (4 * (x_minus_mu_square.sum( |
|
axis=[2, 3], keepdim=True) / n + e_lambda)) + 0.5 |
|
return x * nn.functional.sigmoid(y) |
|
|
|
|
|
class Dict(dict): |
|
__setattr__ = dict.__setitem__ |
|
__getattr__ = dict.__getitem__
|
|
|