You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

191 lines
5.9 KiB

# code was heavily based on https://github.com/Rudrabha/Wav2Lip
# Users should be careful about adopting these functions in any commercial matters.
# https://github.com/Rudrabha/Wav2Lip#license-and-citation
import numpy as np
from scipy import signal
from scipy.io import wavfile
from paddle.utils import try_import
from .audio_config import get_audio_config
audio_config = get_audio_config()
def load_wav(path, sr):
librosa = try_import('librosa')
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
#proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr):
librosa = try_import('librosa')
librosa.output.write_wav(path, wav, sr=sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
def get_hop_size():
hop_size = audio_config.hop_size
if hop_size is None:
assert audio_config.frame_shift_ms is not None
hop_size = int(audio_config.frame_shift_ms / 1000 *
audio_config.sample_rate)
return hop_size
def linearspectrogram(wav):
D = _stft(
preemphasis(wav, audio_config.preemphasis, audio_config.preemphasize))
S = _amp_to_db(np.abs(D)) - audio_config.ref_level_db
if audio_config.signal_normalization:
return _normalize(S)
return S
def melspectrogram(wav):
D = _stft(
preemphasis(wav, audio_config.preemphasis, audio_config.preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - audio_config.ref_level_db
if audio_config.signal_normalization:
return _normalize(S)
return S
def _lws_processor():
import lws
return lws.lws(audio_config.n_fft,
get_hop_size(),
fftsize=audio_config.win_size,
mode="speech")
def _stft(y):
if audio_config.use_lws:
return _lws_processor(audio_config).stft(y).T
else:
librosa = try_import('librosa')
return librosa.stft(
y=y,
n_fft=audio_config.n_fft,
hop_length=get_hop_size(),
win_length=audio_config.win_size)
##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram
"""
pad = (fsize - fshift)
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding
"""
M = num_frames(len(x), fsize, fshift)
pad = (fsize - fshift)
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
#Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)
def _build_mel_basis():
assert audio_config.fmax <= audio_config.sample_rate // 2
librosa = try_import('librosa')
return librosa.filters.mel(audio_config.sample_rate,
audio_config.n_fft,
n_mels=audio_config.num_mels,
fmin=audio_config.fmin,
fmax=audio_config.fmax)
def _amp_to_db(x):
min_level = np.exp(audio_config.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)
def _normalize(S):
if audio_config.allow_clipping_in_normalization:
if audio_config.symmetric_mels:
return np.clip((2 * audio_config.max_abs_value) * (
(S - audio_config.min_level_db) /
(-audio_config.min_level_db)) - audio_config.max_abs_value,
-audio_config.max_abs_value,
audio_config.max_abs_value)
else:
return np.clip(audio_config.max_abs_value * (
(S - audio_config.min_level_db) / (-audio_config.min_level_db)),
0, audio_config.max_abs_value)
assert S.max() <= 0 and S.min() - audio_config.min_level_db >= 0
if audio_config.symmetric_mels:
return (2 * audio_config.max_abs_value) * (
(S - audio_config.min_level_db) /
(-audio_config.min_level_db)) - audio_config.max_abs_value
else:
return audio_config.max_abs_value * (
(S - audio_config.min_level_db) / (-audio_config.min_level_db))
def _denormalize(D):
if audio_config.allow_clipping_in_normalization:
if audio_config.symmetric_mels:
return (
((np.clip(D, -audio_config.max_abs_value,
audio_config.max_abs_value) +
audio_config.max_abs_value) * -audio_config.min_level_db /
(2 * audio_config.max_abs_value)) + audio_config.min_level_db)
else:
return ((np.clip(D, 0, audio_config.max_abs_value) *
-audio_config.min_level_db / audio_config.max_abs_value) +
audio_config.min_level_db)
if audio_config.symmetric_mels:
return (((D + audio_config.max_abs_value) * -audio_config.min_level_db /
(2 * audio_config.max_abs_value)) + audio_config.min_level_db)
else:
return ((D * -audio_config.min_level_db / audio_config.max_abs_value) +
audio_config.min_level_db)