You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
797 lines
26 KiB
797 lines
26 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import math |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
from .layers import ConvBNReLU, ConvBN |
|
|
|
__all__ = [ |
|
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30", |
|
"HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64" |
|
] |
|
|
|
|
|
class HRNet(nn.Layer): |
|
""" |
|
The HRNet implementation based on PaddlePaddle. |
|
|
|
The original article refers to |
|
Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition" |
|
(https://arxiv.org/pdf/1908.07919.pdf). |
|
|
|
Args: |
|
pretrained (str): The path of pretrained model. |
|
stage1_num_modules (int): Number of modules for stage1. Default 1. |
|
stage1_num_blocks (list): Number of blocks per module for stage1. Default [4]. |
|
stage1_num_channels (list): Number of channels per branch for stage1. Default [64]. |
|
stage2_num_modules (int): Number of modules for stage2. Default 1. |
|
stage2_num_blocks (list): Number of blocks per module for stage2. Default [4, 4] |
|
stage2_num_channels (list): Number of channels per branch for stage2. Default [18, 36]. |
|
stage3_num_modules (int): Number of modules for stage3. Default 4. |
|
stage3_num_blocks (list): Number of blocks per module for stage3. Default [4, 4, 4] |
|
stage3_num_channels (list): Number of channels per branch for stage3. Default [18, 36, 72]. |
|
stage4_num_modules (int): Number of modules for stage4. Default 3. |
|
stage4_num_blocks (list): Number of blocks per module for stage4. Default [4, 4, 4, 4] |
|
stage4_num_channels (list): Number of channels per branch for stage4. Default [18, 36, 72. 144]. |
|
has_se (bool): Whether to use Squeeze-and-Excitation module. Default False. |
|
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, |
|
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrained=None, |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[18, 36], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[18, 36, 72], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[18, 36, 72, 144], |
|
has_se=False, |
|
align_corners=False): |
|
super(HRNet, self).__init__() |
|
self.pretrained = pretrained |
|
self.stage1_num_modules = stage1_num_modules |
|
self.stage1_num_blocks = stage1_num_blocks |
|
self.stage1_num_channels = stage1_num_channels |
|
self.stage2_num_modules = stage2_num_modules |
|
self.stage2_num_blocks = stage2_num_blocks |
|
self.stage2_num_channels = stage2_num_channels |
|
self.stage3_num_modules = stage3_num_modules |
|
self.stage3_num_blocks = stage3_num_blocks |
|
self.stage3_num_channels = stage3_num_channels |
|
self.stage4_num_modules = stage4_num_modules |
|
self.stage4_num_blocks = stage4_num_blocks |
|
self.stage4_num_channels = stage4_num_channels |
|
self.has_se = has_se |
|
self.align_corners = align_corners |
|
self.feat_channels = [sum(stage4_num_channels)] |
|
|
|
self.conv_layer1_1 = ConvBNReLU( |
|
in_channels=3, |
|
out_channels=64, |
|
kernel_size=3, |
|
stride=2, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
self.conv_layer1_2 = ConvBNReLU( |
|
in_channels=64, |
|
out_channels=64, |
|
kernel_size=3, |
|
stride=2, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
self.la1 = Layer1( |
|
num_channels=64, |
|
num_blocks=self.stage1_num_blocks[0], |
|
num_filters=self.stage1_num_channels[0], |
|
has_se=has_se, |
|
name="layer2") |
|
|
|
self.tr1 = TransitionLayer( |
|
in_channels=[self.stage1_num_channels[0] * 4], |
|
out_channels=self.stage2_num_channels, |
|
name="tr1") |
|
|
|
self.st2 = Stage( |
|
num_channels=self.stage2_num_channels, |
|
num_modules=self.stage2_num_modules, |
|
num_blocks=self.stage2_num_blocks, |
|
num_filters=self.stage2_num_channels, |
|
has_se=self.has_se, |
|
name="st2", |
|
align_corners=align_corners) |
|
|
|
self.tr2 = TransitionLayer( |
|
in_channels=self.stage2_num_channels, |
|
out_channels=self.stage3_num_channels, |
|
name="tr2") |
|
self.st3 = Stage( |
|
num_channels=self.stage3_num_channels, |
|
num_modules=self.stage3_num_modules, |
|
num_blocks=self.stage3_num_blocks, |
|
num_filters=self.stage3_num_channels, |
|
has_se=self.has_se, |
|
name="st3", |
|
align_corners=align_corners) |
|
|
|
self.tr3 = TransitionLayer( |
|
in_channels=self.stage3_num_channels, |
|
out_channels=self.stage4_num_channels, |
|
name="tr3") |
|
self.st4 = Stage( |
|
num_channels=self.stage4_num_channels, |
|
num_modules=self.stage4_num_modules, |
|
num_blocks=self.stage4_num_blocks, |
|
num_filters=self.stage4_num_channels, |
|
has_se=self.has_se, |
|
name="st4", |
|
align_corners=align_corners) |
|
|
|
def forward(self, x): |
|
conv1 = self.conv_layer1_1(x) |
|
conv2 = self.conv_layer1_2(conv1) |
|
|
|
la1 = self.la1(conv2) |
|
|
|
tr1 = self.tr1([la1]) |
|
st2 = self.st2(tr1) |
|
|
|
tr2 = self.tr2(st2) |
|
st3 = self.st3(tr2) |
|
|
|
tr3 = self.tr3(st3) |
|
st4 = self.st4(tr3) |
|
|
|
x0_h, x0_w = st4[0].shape[2:] |
|
x1 = F.interpolate( |
|
st4[1], (x0_h, x0_w), |
|
mode='bilinear', |
|
align_corners=self.align_corners) |
|
x2 = F.interpolate( |
|
st4[2], (x0_h, x0_w), |
|
mode='bilinear', |
|
align_corners=self.align_corners) |
|
x3 = F.interpolate( |
|
st4[3], (x0_h, x0_w), |
|
mode='bilinear', |
|
align_corners=self.align_corners) |
|
x = paddle.concat([st4[0], x1, x2, x3], axis=1) |
|
|
|
return [x] |
|
|
|
|
|
class Layer1(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
num_blocks, |
|
has_se=False, |
|
name=None): |
|
super(Layer1, self).__init__() |
|
|
|
self.bottleneck_block_list = [] |
|
|
|
for i in range(num_blocks): |
|
bottleneck_block = self.add_sublayer( |
|
"bb_{}_{}".format(name, i + 1), |
|
BottleneckBlock( |
|
num_channels=num_channels if i == 0 else num_filters * 4, |
|
num_filters=num_filters, |
|
has_se=has_se, |
|
stride=1, |
|
downsample=True if i == 0 else False, |
|
name=name + '_' + str(i + 1))) |
|
self.bottleneck_block_list.append(bottleneck_block) |
|
|
|
def forward(self, x): |
|
conv = x |
|
for block_func in self.bottleneck_block_list: |
|
conv = block_func(conv) |
|
return conv |
|
|
|
|
|
class TransitionLayer(nn.Layer): |
|
def __init__(self, in_channels, out_channels, name=None): |
|
super(TransitionLayer, self).__init__() |
|
|
|
num_in = len(in_channels) |
|
num_out = len(out_channels) |
|
self.conv_bn_func_list = [] |
|
for i in range(num_out): |
|
residual = None |
|
if i < num_in: |
|
if in_channels[i] != out_channels[i]: |
|
residual = self.add_sublayer( |
|
"transition_{}_layer_{}".format(name, i + 1), |
|
ConvBNReLU( |
|
in_channels=in_channels[i], |
|
out_channels=out_channels[i], |
|
kernel_size=3, |
|
padding='same', |
|
bias_attr=False)) |
|
else: |
|
residual = self.add_sublayer( |
|
"transition_{}_layer_{}".format(name, i + 1), |
|
ConvBNReLU( |
|
in_channels=in_channels[-1], |
|
out_channels=out_channels[i], |
|
kernel_size=3, |
|
stride=2, |
|
padding='same', |
|
bias_attr=False)) |
|
self.conv_bn_func_list.append(residual) |
|
|
|
def forward(self, x): |
|
outs = [] |
|
for idx, conv_bn_func in enumerate(self.conv_bn_func_list): |
|
if conv_bn_func is None: |
|
outs.append(x[idx]) |
|
else: |
|
if idx < len(x): |
|
outs.append(conv_bn_func(x[idx])) |
|
else: |
|
outs.append(conv_bn_func(x[-1])) |
|
return outs |
|
|
|
|
|
class Branches(nn.Layer): |
|
def __init__(self, |
|
num_blocks, |
|
in_channels, |
|
out_channels, |
|
has_se=False, |
|
name=None): |
|
super(Branches, self).__init__() |
|
|
|
self.basic_block_list = [] |
|
|
|
for i in range(len(out_channels)): |
|
self.basic_block_list.append([]) |
|
for j in range(num_blocks[i]): |
|
in_ch = in_channels[i] if j == 0 else out_channels[i] |
|
basic_block_func = self.add_sublayer( |
|
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1), |
|
BasicBlock( |
|
num_channels=in_ch, |
|
num_filters=out_channels[i], |
|
has_se=has_se, |
|
name=name + '_branch_layer_' + str(i + 1) + '_' + |
|
str(j + 1))) |
|
self.basic_block_list[i].append(basic_block_func) |
|
|
|
def forward(self, x): |
|
outs = [] |
|
for idx, input in enumerate(x): |
|
conv = input |
|
for basic_block_func in self.basic_block_list[idx]: |
|
conv = basic_block_func(conv) |
|
outs.append(conv) |
|
return outs |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
has_se, |
|
stride=1, |
|
downsample=False, |
|
name=None): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
self.has_se = has_se |
|
self.downsample = downsample |
|
|
|
self.conv1 = ConvBNReLU( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=1, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
self.conv2 = ConvBNReLU( |
|
in_channels=num_filters, |
|
out_channels=num_filters, |
|
kernel_size=3, |
|
stride=stride, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
self.conv3 = ConvBN( |
|
in_channels=num_filters, |
|
out_channels=num_filters * 4, |
|
kernel_size=1, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
if self.downsample: |
|
self.conv_down = ConvBN( |
|
in_channels=num_channels, |
|
out_channels=num_filters * 4, |
|
kernel_size=1, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
if self.has_se: |
|
self.se = SELayer( |
|
num_channels=num_filters * 4, |
|
num_filters=num_filters * 4, |
|
reduction_ratio=16, |
|
name=name + '_fc') |
|
|
|
def forward(self, x): |
|
residual = x |
|
conv1 = self.conv1(x) |
|
conv2 = self.conv2(conv1) |
|
conv3 = self.conv3(conv2) |
|
|
|
if self.downsample: |
|
residual = self.conv_down(x) |
|
|
|
if self.has_se: |
|
conv3 = self.se(conv3) |
|
|
|
y = conv3 + residual |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride=1, |
|
has_se=False, |
|
downsample=False, |
|
name=None): |
|
super(BasicBlock, self).__init__() |
|
|
|
self.has_se = has_se |
|
self.downsample = downsample |
|
|
|
self.conv1 = ConvBNReLU( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=3, |
|
stride=stride, |
|
padding='same', |
|
bias_attr=False) |
|
self.conv2 = ConvBN( |
|
in_channels=num_filters, |
|
out_channels=num_filters, |
|
kernel_size=3, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
if self.downsample: |
|
self.conv_down = ConvBNReLU( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=1, |
|
padding='same', |
|
bias_attr=False) |
|
|
|
if self.has_se: |
|
self.se = SELayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters, |
|
reduction_ratio=16, |
|
name=name + '_fc') |
|
|
|
def forward(self, x): |
|
residual = x |
|
conv1 = self.conv1(x) |
|
conv2 = self.conv2(conv1) |
|
|
|
if self.downsample: |
|
residual = self.conv_down(x) |
|
|
|
if self.has_se: |
|
conv2 = self.se(conv2) |
|
|
|
y = conv2 + residual |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class SELayer(nn.Layer): |
|
def __init__(self, num_channels, num_filters, reduction_ratio, name=None): |
|
super(SELayer, self).__init__() |
|
|
|
self.pool2d_gap = nn.AdaptiveAvgPool2D(1) |
|
|
|
self._num_channels = num_channels |
|
|
|
med_ch = int(num_channels / reduction_ratio) |
|
stdv = 1.0 / math.sqrt(num_channels * 1.0) |
|
self.squeeze = nn.Linear( |
|
num_channels, |
|
med_ch, |
|
weight_attr=paddle.ParamAttr( |
|
initializer=nn.initializer.Uniform(-stdv, stdv))) |
|
|
|
stdv = 1.0 / math.sqrt(med_ch * 1.0) |
|
self.excitation = nn.Linear( |
|
med_ch, |
|
num_filters, |
|
weight_attr=paddle.ParamAttr( |
|
initializer=nn.initializer.Uniform(-stdv, stdv))) |
|
|
|
def forward(self, x): |
|
pool = self.pool2d_gap(x) |
|
pool = paddle.reshape(pool, shape=[-1, self._num_channels]) |
|
squeeze = self.squeeze(pool) |
|
squeeze = F.relu(squeeze) |
|
excitation = self.excitation(squeeze) |
|
excitation = F.sigmoid(excitation) |
|
excitation = paddle.reshape( |
|
excitation, shape=[-1, self._num_channels, 1, 1]) |
|
out = x * excitation |
|
return out |
|
|
|
|
|
class Stage(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_modules, |
|
num_blocks, |
|
num_filters, |
|
has_se=False, |
|
multi_scale_output=True, |
|
name=None, |
|
align_corners=False): |
|
super(Stage, self).__init__() |
|
|
|
self._num_modules = num_modules |
|
|
|
self.stage_func_list = [] |
|
for i in range(num_modules): |
|
if i == num_modules - 1 and not multi_scale_output: |
|
stage_func = self.add_sublayer( |
|
"stage_{}_{}".format(name, i + 1), |
|
HighResolutionModule( |
|
num_channels=num_channels, |
|
num_blocks=num_blocks, |
|
num_filters=num_filters, |
|
has_se=has_se, |
|
multi_scale_output=False, |
|
name=name + '_' + str(i + 1), |
|
align_corners=align_corners)) |
|
else: |
|
stage_func = self.add_sublayer( |
|
"stage_{}_{}".format(name, i + 1), |
|
HighResolutionModule( |
|
num_channels=num_channels, |
|
num_blocks=num_blocks, |
|
num_filters=num_filters, |
|
has_se=has_se, |
|
name=name + '_' + str(i + 1), |
|
align_corners=align_corners)) |
|
|
|
self.stage_func_list.append(stage_func) |
|
|
|
def forward(self, x): |
|
out = x |
|
for idx in range(self._num_modules): |
|
out = self.stage_func_list[idx](out) |
|
return out |
|
|
|
|
|
class HighResolutionModule(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_blocks, |
|
num_filters, |
|
has_se=False, |
|
multi_scale_output=True, |
|
name=None, |
|
align_corners=False): |
|
super(HighResolutionModule, self).__init__() |
|
|
|
self.branches_func = Branches( |
|
num_blocks=num_blocks, |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
has_se=has_se, |
|
name=name) |
|
|
|
self.fuse_func = FuseLayers( |
|
in_channels=num_filters, |
|
out_channels=num_filters, |
|
multi_scale_output=multi_scale_output, |
|
name=name, |
|
align_corners=align_corners) |
|
|
|
def forward(self, x): |
|
out = self.branches_func(x) |
|
out = self.fuse_func(out) |
|
return out |
|
|
|
|
|
class FuseLayers(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
multi_scale_output=True, |
|
name=None, |
|
align_corners=False): |
|
super(FuseLayers, self).__init__() |
|
|
|
self._actual_ch = len(in_channels) if multi_scale_output else 1 |
|
self._in_channels = in_channels |
|
self.align_corners = align_corners |
|
|
|
self.residual_func_list = [] |
|
for i in range(self._actual_ch): |
|
for j in range(len(in_channels)): |
|
if j > i: |
|
residual_func = self.add_sublayer( |
|
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1), |
|
ConvBN( |
|
in_channels=in_channels[j], |
|
out_channels=out_channels[i], |
|
kernel_size=1, |
|
padding='same', |
|
bias_attr=False)) |
|
self.residual_func_list.append(residual_func) |
|
elif j < i: |
|
pre_num_filters = in_channels[j] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
residual_func = self.add_sublayer( |
|
"residual_{}_layer_{}_{}_{}".format( |
|
name, i + 1, j + 1, k + 1), |
|
ConvBN( |
|
in_channels=pre_num_filters, |
|
out_channels=out_channels[i], |
|
kernel_size=3, |
|
stride=2, |
|
padding='same', |
|
bias_attr=False)) |
|
pre_num_filters = out_channels[i] |
|
else: |
|
residual_func = self.add_sublayer( |
|
"residual_{}_layer_{}_{}_{}".format( |
|
name, i + 1, j + 1, k + 1), |
|
ConvBNReLU( |
|
in_channels=pre_num_filters, |
|
out_channels=out_channels[j], |
|
kernel_size=3, |
|
stride=2, |
|
padding='same', |
|
bias_attr=False)) |
|
pre_num_filters = out_channels[j] |
|
self.residual_func_list.append(residual_func) |
|
|
|
def forward(self, x): |
|
outs = [] |
|
residual_func_idx = 0 |
|
for i in range(self._actual_ch): |
|
residual = x[i] |
|
residual_shape = residual.shape[-2:] |
|
for j in range(len(self._in_channels)): |
|
if j > i: |
|
y = self.residual_func_list[residual_func_idx](x[j]) |
|
residual_func_idx += 1 |
|
|
|
y = F.interpolate( |
|
y, |
|
residual_shape, |
|
mode='bilinear', |
|
align_corners=self.align_corners) |
|
residual = residual + y |
|
elif j < i: |
|
y = x[j] |
|
for k in range(i - j): |
|
y = self.residual_func_list[residual_func_idx](y) |
|
residual_func_idx += 1 |
|
|
|
residual = residual + y |
|
|
|
residual = F.relu(residual) |
|
outs.append(residual) |
|
|
|
return outs |
|
|
|
|
|
def HRNet_W18_Small_V1(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[1], |
|
stage1_num_channels=[32], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[2, 2], |
|
stage2_num_channels=[16, 32], |
|
stage3_num_modules=1, |
|
stage3_num_blocks=[2, 2, 2], |
|
stage3_num_channels=[16, 32, 64], |
|
stage4_num_modules=1, |
|
stage4_num_blocks=[2, 2, 2, 2], |
|
stage4_num_channels=[16, 32, 64, 128], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W18_Small_V2(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[2], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[2, 2], |
|
stage2_num_channels=[18, 36], |
|
stage3_num_modules=1, |
|
stage3_num_blocks=[2, 2, 2], |
|
stage3_num_channels=[18, 36, 72], |
|
stage4_num_modules=1, |
|
stage4_num_blocks=[2, 2, 2, 2], |
|
stage4_num_channels=[18, 36, 72, 144], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W18(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[18, 36], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[18, 36, 72], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[18, 36, 72, 144], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W30(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[30, 60], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[30, 60, 120], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[30, 60, 120, 240], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W32(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[32, 64], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[32, 64, 128], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[32, 64, 128, 256], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W40(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[40, 80], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[40, 80, 160], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[40, 80, 160, 320], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W44(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[44, 88], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[44, 88, 176], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[44, 88, 176, 352], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W48(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[48, 96], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[48, 96, 192], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[48, 96, 192, 384], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W60(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[60, 120], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[60, 120, 240], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[60, 120, 240, 480], |
|
**kwargs) |
|
return model |
|
|
|
|
|
def HRNet_W64(**kwargs): |
|
model = HRNet( |
|
stage1_num_modules=1, |
|
stage1_num_blocks=[4], |
|
stage1_num_channels=[64], |
|
stage2_num_modules=1, |
|
stage2_num_blocks=[4, 4], |
|
stage2_num_channels=[64, 128], |
|
stage3_num_modules=4, |
|
stage3_num_blocks=[4, 4, 4], |
|
stage3_num_channels=[64, 128, 256], |
|
stage4_num_modules=3, |
|
stage4_num_blocks=[4, 4, 4, 4], |
|
stage4_num_channels=[64, 128, 256, 512], |
|
**kwargs) |
|
return model
|
|
|