You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

84 lines
2.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle.utils import try_import
from paddlers.models.ppdet.core.workspace import register, serializable
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class QAT(object):
def __init__(self, quant_config, print_model):
super(QAT, self).__init__()
self.quant_config = quant_config
self.print_model = print_model
def __call__(self, model):
paddleslim = try_import('paddleslim')
self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config)
if self.print_model:
logger.info("Model before quant:")
logger.info(model)
self.quanter.quantize(model)
if self.print_model:
logger.info("Quantized model:")
logger.info(model)
return model
def save_quantized_model(self, layer, path, input_spec=None, **config):
self.quanter.save_quantized_model(
model=layer, path=path, input_spec=input_spec, **config)
@register
@serializable
class PTQ(object):
def __init__(self,
ptq_config,
quant_batch_num=10,
output_dir='output_inference',
fuse=True,
fuse_list=None):
super(PTQ, self).__init__()
self.ptq_config = ptq_config
self.quant_batch_num = quant_batch_num
self.output_dir = output_dir
self.fuse = fuse
self.fuse_list = fuse_list
def __call__(self, model):
paddleslim = try_import('paddleslim')
self.ptq = paddleslim.PTQ(**self.ptq_config)
model.eval()
quant_model = self.ptq.quantize(
model, fuse=self.fuse, fuse_list=self.fuse_list)
return quant_model
def save_quantized_model(self,
quant_model,
quantize_model_path,
input_spec=None):
self.ptq.save_quantized_model(quant_model, quantize_model_path,
input_spec)