You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
337 lines
11 KiB
337 lines
11 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
import paddle.nn as nn |
|
|
|
import paddle.optimizer as optimizer |
|
import paddle.regularizer as regularizer |
|
|
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
|
|
__all__ = ['LearningRate', 'OptimizerBuilder'] |
|
|
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger(__name__) |
|
|
|
|
|
@serializable |
|
class CosineDecay(object): |
|
""" |
|
Cosine learning rate decay |
|
|
|
Args: |
|
max_epochs (int): max epochs for the training process. |
|
if you commbine cosine decay with warmup, it is recommended that |
|
the max_iters is much larger than the warmup iter |
|
""" |
|
|
|
def __init__(self, max_epochs=1000, use_warmup=True, eta_min=0): |
|
self.max_epochs = max_epochs |
|
self.use_warmup = use_warmup |
|
self.eta_min = eta_min |
|
|
|
def __call__(self, |
|
base_lr=None, |
|
boundary=None, |
|
value=None, |
|
step_per_epoch=None): |
|
assert base_lr is not None, "either base LR or values should be provided" |
|
|
|
max_iters = self.max_epochs * int(step_per_epoch) |
|
|
|
if boundary is not None and value is not None and self.use_warmup: |
|
warmup_iters = len(boundary) |
|
for i in range(int(boundary[-1]), max_iters): |
|
boundary.append(i) |
|
|
|
decayed_lr = base_lr * 0.5 * (math.cos( |
|
(i - warmup_iters) * math.pi / |
|
(max_iters - warmup_iters)) + 1) |
|
value.append(decayed_lr) |
|
return optimizer.lr.PiecewiseDecay(boundary, value) |
|
|
|
return optimizer.lr.CosineAnnealingDecay( |
|
base_lr, T_max=max_iters, eta_min=self.eta_min) |
|
|
|
|
|
@serializable |
|
class PiecewiseDecay(object): |
|
""" |
|
Multi step learning rate decay |
|
|
|
Args: |
|
gamma (float | list): decay factor |
|
milestones (list): steps at which to decay learning rate |
|
""" |
|
|
|
def __init__(self, |
|
gamma=[0.1, 0.01], |
|
milestones=[8, 11], |
|
values=None, |
|
use_warmup=True): |
|
super(PiecewiseDecay, self).__init__() |
|
if type(gamma) is not list: |
|
self.gamma = [] |
|
for i in range(len(milestones)): |
|
self.gamma.append(gamma / 10**i) |
|
else: |
|
self.gamma = gamma |
|
self.milestones = milestones |
|
self.values = values |
|
self.use_warmup = use_warmup |
|
|
|
def __call__(self, |
|
base_lr=None, |
|
boundary=None, |
|
value=None, |
|
step_per_epoch=None): |
|
if boundary is not None and self.use_warmup: |
|
boundary.extend([int(step_per_epoch) * i for i in self.milestones]) |
|
else: |
|
# do not use LinearWarmup |
|
boundary = [int(step_per_epoch) * i for i in self.milestones] |
|
value = [base_lr] # during step[0, boundary[0]] is base_lr |
|
|
|
# self.values is setted directly in config |
|
if self.values is not None: |
|
assert len(self.milestones) + 1 == len(self.values) |
|
return optimizer.lr.PiecewiseDecay(boundary, self.values) |
|
|
|
# value is computed by self.gamma |
|
value = value if value is not None else [base_lr] |
|
for i in self.gamma: |
|
value.append(base_lr * i) |
|
|
|
return optimizer.lr.PiecewiseDecay(boundary, value) |
|
|
|
|
|
@serializable |
|
class LinearWarmup(object): |
|
""" |
|
Warm up learning rate linearly |
|
|
|
Args: |
|
steps (int): warm up steps |
|
start_factor (float): initial learning rate factor |
|
""" |
|
|
|
def __init__(self, steps=500, start_factor=1. / 3): |
|
super(LinearWarmup, self).__init__() |
|
self.steps = steps |
|
self.start_factor = start_factor |
|
|
|
def __call__(self, base_lr, step_per_epoch): |
|
boundary = [] |
|
value = [] |
|
for i in range(self.steps + 1): |
|
if self.steps > 0: |
|
alpha = i / self.steps |
|
factor = self.start_factor * (1 - alpha) + alpha |
|
lr = base_lr * factor |
|
value.append(lr) |
|
if i > 0: |
|
boundary.append(i) |
|
return boundary, value |
|
|
|
|
|
@serializable |
|
class BurninWarmup(object): |
|
""" |
|
Warm up learning rate in burnin mode |
|
Args: |
|
steps (int): warm up steps |
|
""" |
|
|
|
def __init__(self, steps=1000): |
|
super(BurninWarmup, self).__init__() |
|
self.steps = steps |
|
|
|
def __call__(self, base_lr, step_per_epoch): |
|
boundary = [] |
|
value = [] |
|
burnin = min(self.steps, step_per_epoch) |
|
for i in range(burnin + 1): |
|
factor = (i * 1.0 / burnin)**4 |
|
lr = base_lr * factor |
|
value.append(lr) |
|
if i > 0: |
|
boundary.append(i) |
|
return boundary, value |
|
|
|
|
|
@register |
|
class LearningRate(object): |
|
""" |
|
Learning Rate configuration |
|
|
|
Args: |
|
base_lr (float): base learning rate |
|
schedulers (list): learning rate schedulers |
|
""" |
|
__category__ = 'optim' |
|
|
|
def __init__(self, |
|
base_lr=0.01, |
|
schedulers=[PiecewiseDecay(), LinearWarmup()]): |
|
super(LearningRate, self).__init__() |
|
self.base_lr = base_lr |
|
self.schedulers = schedulers |
|
|
|
def __call__(self, step_per_epoch): |
|
assert len(self.schedulers) >= 1 |
|
if not self.schedulers[0].use_warmup: |
|
return self.schedulers[0](base_lr=self.base_lr, |
|
step_per_epoch=step_per_epoch) |
|
|
|
# TODO: split warmup & decay |
|
# warmup |
|
boundary, value = self.schedulers[1](self.base_lr, step_per_epoch) |
|
# decay |
|
decay_lr = self.schedulers[0](self.base_lr, boundary, value, |
|
step_per_epoch) |
|
return decay_lr |
|
|
|
|
|
@register |
|
class OptimizerBuilder(): |
|
""" |
|
Build optimizer handles |
|
Args: |
|
regularizer (object): an `Regularizer` instance |
|
optimizer (object): an `Optimizer` instance |
|
""" |
|
__category__ = 'optim' |
|
|
|
def __init__(self, |
|
clip_grad_by_norm=None, |
|
regularizer={'type': 'L2', |
|
'factor': .0001}, |
|
optimizer={'type': 'Momentum', |
|
'momentum': .9}): |
|
self.clip_grad_by_norm = clip_grad_by_norm |
|
self.regularizer = regularizer |
|
self.optimizer = optimizer |
|
|
|
def __call__(self, learning_rate, model=None): |
|
if self.clip_grad_by_norm is not None: |
|
grad_clip = nn.ClipGradByGlobalNorm( |
|
clip_norm=self.clip_grad_by_norm) |
|
else: |
|
grad_clip = None |
|
if self.regularizer and self.regularizer != 'None': |
|
reg_type = self.regularizer['type'] + 'Decay' |
|
reg_factor = self.regularizer['factor'] |
|
regularization = getattr(regularizer, reg_type)(reg_factor) |
|
else: |
|
regularization = None |
|
|
|
optim_args = self.optimizer.copy() |
|
optim_type = optim_args['type'] |
|
del optim_args['type'] |
|
if optim_type != 'AdamW': |
|
optim_args['weight_decay'] = regularization |
|
op = getattr(optimizer, optim_type) |
|
|
|
if 'without_weight_decay_params' in optim_args: |
|
keys = optim_args['without_weight_decay_params'] |
|
params = [{ |
|
'params': [ |
|
p for n, p in model.named_parameters() |
|
if any([k in n for k in keys]) |
|
], |
|
'weight_decay': 0. |
|
}, { |
|
'params': [ |
|
p for n, p in model.named_parameters() |
|
if all([k not in n for k in keys]) |
|
] |
|
}] |
|
del optim_args['without_weight_decay_params'] |
|
else: |
|
params = model.parameters() |
|
|
|
return op(learning_rate=learning_rate, |
|
parameters=params, |
|
grad_clip=grad_clip, |
|
**optim_args) |
|
|
|
|
|
class ModelEMA(object): |
|
""" |
|
Exponential Weighted Average for Deep Neutal Networks |
|
Args: |
|
model (nn.Layer): Detector of model. |
|
decay (int): The decay used for updating ema parameter. |
|
Ema's parameter are updated with the formula: |
|
`ema_param = decay * ema_param + (1 - decay) * cur_param`. |
|
Defaults is 0.9998. |
|
use_thres_step (bool): Whether set decay by thres_step or not |
|
cycle_epoch (int): The epoch of interval to reset ema_param and |
|
step. Defaults is -1, which means not reset. Its function is to |
|
add a regular effect to ema, which is set according to experience |
|
and is effective when the total training epoch is large. |
|
""" |
|
|
|
def __init__(self, |
|
model, |
|
decay=0.9998, |
|
use_thres_step=False, |
|
cycle_epoch=-1): |
|
self.step = 0 |
|
self.epoch = 0 |
|
self.decay = decay |
|
self.state_dict = dict() |
|
for k, v in model.state_dict().items(): |
|
self.state_dict[k] = paddle.zeros_like(v) |
|
self.use_thres_step = use_thres_step |
|
self.cycle_epoch = cycle_epoch |
|
|
|
def reset(self): |
|
self.step = 0 |
|
self.epoch = 0 |
|
for k, v in self.state_dict.items(): |
|
self.state_dict[k] = paddle.zeros_like(v) |
|
|
|
def update(self, model): |
|
if self.use_thres_step: |
|
decay = min(self.decay, (1 + self.step) / (10 + self.step)) |
|
else: |
|
decay = self.decay |
|
self._decay = decay |
|
model_dict = model.state_dict() |
|
for k, v in self.state_dict.items(): |
|
v = decay * v + (1 - decay) * model_dict[k] |
|
v.stop_gradient = True |
|
self.state_dict[k] = v |
|
self.step += 1 |
|
|
|
def apply(self): |
|
if self.step == 0: |
|
return self.state_dict |
|
state_dict = dict() |
|
for k, v in self.state_dict.items(): |
|
v = v / (1 - self._decay**self.step) |
|
v.stop_gradient = True |
|
state_dict[k] = v |
|
self.epoch += 1 |
|
if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch: |
|
self.reset() |
|
|
|
return state_dict
|
|
|