You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

727 lines
24 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, Linear
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Uniform
from numbers import Integral
import math
from paddlers.models.ppdet.core.workspace import register
from ..shape_spec import ShapeSpec
__all__ = ['HRNet']
class ConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
norm_type='bn',
norm_groups=32,
use_dcn=False,
norm_decay=0.,
freeze_norm=False,
act=None,
name=None):
super(ConvNormLayer, self).__init__()
assert norm_type in ['bn', 'sync_bn', 'gn']
self.act = act
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=False)
norm_lr = 0. if freeze_norm else 1.
param_attr = ParamAttr(
learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(
learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
global_stats = True if freeze_norm else None
if norm_type in ['bn', 'sync_bn']:
self.norm = nn.BatchNorm2D(
ch_out,
weight_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats)
elif norm_type == 'gn':
self.norm = nn.GroupNorm(
num_groups=norm_groups,
num_channels=ch_out,
weight_attr=param_attr,
bias_attr=bias_attr)
norm_params = self.norm.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
if self.act == 'relu':
out = F.relu(out)
return out
class Layer1(nn.Layer):
def __init__(self,
num_channels,
has_se=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(Layer1, self).__init__()
self.bottleneck_block_list = []
for i in range(4):
bottleneck_block = self.add_sublayer(
"block_{}_{}".format(name, i + 1),
BottleneckBlock(
num_channels=num_channels if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_' + str(i + 1)))
self.bottleneck_block_list.append(bottleneck_block)
def forward(self, input):
conv = input
for block_func in self.bottleneck_block_list:
conv = block_func(conv)
return conv
class TransitionLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
norm_decay=0.,
freeze_norm=True,
name=None):
super(TransitionLayer, self).__init__()
num_in = len(in_channels)
num_out = len(out_channels)
out = []
self.conv_bn_func_list = []
for i in range(num_out):
residual = None
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvNormLayer(
ch_in=in_channels[i],
ch_out=out_channels[i],
filter_size=3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name=name + '_layer_' + str(i + 1)))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvNormLayer(
ch_in=in_channels[-1],
ch_out=out_channels[i],
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name=name + '_layer_' + str(i + 1)))
self.conv_bn_func_list.append(residual)
def forward(self, input):
outs = []
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
if conv_bn_func is None:
outs.append(input[idx])
else:
if idx < len(input):
outs.append(conv_bn_func(input[idx]))
else:
outs.append(conv_bn_func(input[-1]))
return outs
class Branches(nn.Layer):
def __init__(self,
block_num,
in_channels,
out_channels,
has_se=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(Branches, self).__init__()
self.basic_block_list = []
for i in range(len(out_channels)):
self.basic_block_list.append([])
for j in range(block_num):
in_ch = in_channels[i] if j == 0 else out_channels[i]
basic_block_func = self.add_sublayer(
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
BasicBlock(
num_channels=in_ch,
num_filters=out_channels[i],
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.basic_block_list[i].append(basic_block_func)
def forward(self, inputs):
outs = []
for idx, input in enumerate(inputs):
conv = input
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
conv = basic_block_func(conv)
outs.append(conv)
return outs
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se,
stride=1,
downsample=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(BottleneckBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + "_conv1")
self.conv2 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters,
filter_size=3,
stride=stride,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + "_conv2")
self.conv3 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters * 4,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_conv3")
if self.downsample:
self.conv_down = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters * 4,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_downsample")
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
reduction_ratio=16,
name='fc' + name)
def forward(self, input):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
if self.downsample:
residual = self.conv_down(input)
if self.has_se:
conv3 = self.se(conv3)
y = paddle.add(x=residual, y=conv3)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride=1,
has_se=False,
downsample=False,
norm_decay=0.,
freeze_norm=True,
name=None):
super(BasicBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters,
filter_size=3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
stride=stride,
act="relu",
name=name + "_conv1")
self.conv2 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters,
filter_size=3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
stride=1,
act=None,
name=name + "_conv2")
if self.downsample:
self.conv_down = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters * 4,
filter_size=1,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_downsample")
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
reduction_ratio=16,
name='fc' + name)
def forward(self, input):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
if self.downsample:
residual = self.conv_down(input)
if self.has_se:
conv2 = self.se(conv2)
y = paddle.add(x=residual, y=conv2)
y = F.relu(y)
return y
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
super(SELayer, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
def forward(self, input):
pool = self.pool2d_gap(input)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = F.sigmoid(excitation)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = input * excitation
return out
class Stage(nn.Layer):
def __init__(self,
num_channels,
num_modules,
num_filters,
has_se=False,
norm_decay=0.,
freeze_norm=True,
multi_scale_output=True,
name=None):
super(Stage, self).__init__()
self._num_modules = num_modules
self.stage_func_list = []
for i in range(num_modules):
if i == num_modules - 1 and not multi_scale_output:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
multi_scale_output=False,
name=name + '_' + str(i + 1)))
else:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_' + str(i + 1)))
self.stage_func_list.append(stage_func)
def forward(self, input):
out = input
for idx in range(self._num_modules):
out = self.stage_func_list[idx](out)
return out
class HighResolutionModule(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se=False,
multi_scale_output=True,
norm_decay=0.,
freeze_norm=True,
name=None):
super(HighResolutionModule, self).__init__()
self.branches_func = Branches(
block_num=4,
in_channels=num_channels,
out_channels=num_filters,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name)
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters,
multi_scale_output=multi_scale_output,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name)
def forward(self, input):
out = self.branches_func(input)
out = self.fuse_func(out)
return out
class FuseLayers(nn.Layer):
def __init__(self,
in_channels,
out_channels,
multi_scale_output=True,
norm_decay=0.,
freeze_norm=True,
name=None):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels) if multi_scale_output else 1
self._in_channels = in_channels
self.residual_func_list = []
for i in range(self._actual_ch):
for j in range(len(in_channels)):
residual_func = None
if j > i:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
ConvNormLayer(
ch_in=in_channels[j],
ch_out=out_channels[i],
filter_size=1,
stride=1,
act=None,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.residual_func_list.append(residual_func)
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvNormLayer(
ch_in=pre_num_filters,
ch_out=out_channels[i],
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvNormLayer(
ch_in=pre_num_filters,
ch_out=out_channels[j],
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
def forward(self, input):
outs = []
residual_func_idx = 0
for i in range(self._actual_ch):
residual = input[i]
for j in range(len(self._in_channels)):
if j > i:
y = self.residual_func_list[residual_func_idx](input[j])
residual_func_idx += 1
y = F.interpolate(y, scale_factor=2**(j - i))
residual = paddle.add(x=residual, y=y)
elif j < i:
y = input[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
residual_func_idx += 1
residual = paddle.add(x=residual, y=y)
residual = F.relu(residual)
outs.append(residual)
return outs
@register
class HRNet(nn.Layer):
"""
HRNet, see https://arxiv.org/abs/1908.07919
Args:
width (int): the width of HRNet
has_se (bool): whether to add SE block for each stage
freeze_at (int): the stage to freeze
freeze_norm (bool): whether to freeze norm in HRNet
norm_decay (float): weight decay for normalization layer weights
return_idx (List): the stage to return
upsample (bool): whether to upsample and concat the backbone feats
"""
def __init__(self,
width=18,
has_se=False,
freeze_at=0,
freeze_norm=True,
norm_decay=0.,
return_idx=[0, 1, 2, 3],
upsample=False):
super(HRNet, self).__init__()
self.width = width
self.has_se = has_se
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert len(return_idx) > 0, "need one or more return index"
self.freeze_at = freeze_at
self.return_idx = return_idx
self.upsample = upsample
self.channels = {
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
}
channels_2, channels_3, channels_4 = self.channels[width]
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
self._out_channels = [sum(channels_4)] if self.upsample else channels_4
self._out_strides = [4] if self.upsample else [4, 8, 16, 32]
self.conv_layer1_1 = ConvNormLayer(
ch_in=3,
ch_out=64,
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name="layer1_1")
self.conv_layer1_2 = ConvNormLayer(
ch_in=64,
ch_out=64,
filter_size=3,
stride=2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name="layer1_2")
self.la1 = Layer1(
num_channels=64,
has_se=has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="layer2")
self.tr1 = TransitionLayer(
in_channels=[256],
out_channels=channels_2,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr1")
self.st2 = Stage(
num_channels=channels_2,
num_modules=num_modules_2,
num_filters=channels_2,
has_se=self.has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="st2")
self.tr2 = TransitionLayer(
in_channels=channels_2,
out_channels=channels_3,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr2")
self.st3 = Stage(
num_channels=channels_3,
num_modules=num_modules_3,
num_filters=channels_3,
has_se=self.has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="st3")
self.tr3 = TransitionLayer(
in_channels=channels_3,
out_channels=channels_4,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr3")
self.st4 = Stage(
num_channels=channels_4,
num_modules=num_modules_4,
num_filters=channels_4,
has_se=self.has_se,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
multi_scale_output=len(return_idx) > 1,
name="st4")
def forward(self, inputs):
x = inputs['image']
conv1 = self.conv_layer1_1(x)
conv2 = self.conv_layer1_2(conv1)
la1 = self.la1(conv2)
tr1 = self.tr1([la1])
st2 = self.st2(tr1)
tr2 = self.tr2(st2)
st3 = self.st3(tr2)
tr3 = self.tr3(st3)
st4 = self.st4(tr3)
if self.upsample:
# Upsampling
x0_h, x0_w = st4[0].shape[2:4]
x1 = F.upsample(st4[1], size=(x0_h, x0_w), mode='bilinear')
x2 = F.upsample(st4[2], size=(x0_h, x0_w), mode='bilinear')
x3 = F.upsample(st4[3], size=(x0_h, x0_w), mode='bilinear')
x = paddle.concat([st4[0], x1, x2, x3], 1)
return x
res = []
for i, layer in enumerate(st4):
if i == self.freeze_at:
layer.stop_gradient = True
if i in self.return_idx:
res.append(layer)
return res
@property
def out_shape(self):
if self.upsample:
self.return_idx = [0]
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]