You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
727 lines
24 KiB
727 lines
24 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn import AdaptiveAvgPool2D, Linear |
|
from paddle.regularizer import L2Decay |
|
from paddle import ParamAttr |
|
from paddle.nn.initializer import Normal, Uniform |
|
from numbers import Integral |
|
import math |
|
|
|
from paddlers.models.ppdet.core.workspace import register |
|
from ..shape_spec import ShapeSpec |
|
|
|
__all__ = ['HRNet'] |
|
|
|
|
|
class ConvNormLayer(nn.Layer): |
|
def __init__(self, |
|
ch_in, |
|
ch_out, |
|
filter_size, |
|
stride=1, |
|
norm_type='bn', |
|
norm_groups=32, |
|
use_dcn=False, |
|
norm_decay=0., |
|
freeze_norm=False, |
|
act=None, |
|
name=None): |
|
super(ConvNormLayer, self).__init__() |
|
assert norm_type in ['bn', 'sync_bn', 'gn'] |
|
|
|
self.act = act |
|
self.conv = nn.Conv2D( |
|
in_channels=ch_in, |
|
out_channels=ch_out, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=(filter_size - 1) // 2, |
|
groups=1, |
|
weight_attr=ParamAttr(initializer=Normal( |
|
mean=0., std=0.01)), |
|
bias_attr=False) |
|
|
|
norm_lr = 0. if freeze_norm else 1. |
|
|
|
param_attr = ParamAttr( |
|
learning_rate=norm_lr, regularizer=L2Decay(norm_decay)) |
|
bias_attr = ParamAttr( |
|
learning_rate=norm_lr, regularizer=L2Decay(norm_decay)) |
|
global_stats = True if freeze_norm else None |
|
if norm_type in ['bn', 'sync_bn']: |
|
self.norm = nn.BatchNorm2D( |
|
ch_out, |
|
weight_attr=param_attr, |
|
bias_attr=bias_attr, |
|
use_global_stats=global_stats) |
|
elif norm_type == 'gn': |
|
self.norm = nn.GroupNorm( |
|
num_groups=norm_groups, |
|
num_channels=ch_out, |
|
weight_attr=param_attr, |
|
bias_attr=bias_attr) |
|
norm_params = self.norm.parameters() |
|
if freeze_norm: |
|
for param in norm_params: |
|
param.stop_gradient = True |
|
|
|
def forward(self, inputs): |
|
out = self.conv(inputs) |
|
out = self.norm(out) |
|
|
|
if self.act == 'relu': |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class Layer1(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
has_se=False, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(Layer1, self).__init__() |
|
|
|
self.bottleneck_block_list = [] |
|
|
|
for i in range(4): |
|
bottleneck_block = self.add_sublayer( |
|
"block_{}_{}".format(name, i + 1), |
|
BottleneckBlock( |
|
num_channels=num_channels if i == 0 else 256, |
|
num_filters=64, |
|
has_se=has_se, |
|
stride=1, |
|
downsample=True if i == 0 else False, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + '_' + str(i + 1))) |
|
self.bottleneck_block_list.append(bottleneck_block) |
|
|
|
def forward(self, input): |
|
conv = input |
|
for block_func in self.bottleneck_block_list: |
|
conv = block_func(conv) |
|
return conv |
|
|
|
|
|
class TransitionLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(TransitionLayer, self).__init__() |
|
|
|
num_in = len(in_channels) |
|
num_out = len(out_channels) |
|
out = [] |
|
self.conv_bn_func_list = [] |
|
for i in range(num_out): |
|
residual = None |
|
if i < num_in: |
|
if in_channels[i] != out_channels[i]: |
|
residual = self.add_sublayer( |
|
"transition_{}_layer_{}".format(name, i + 1), |
|
ConvNormLayer( |
|
ch_in=in_channels[i], |
|
ch_out=out_channels[i], |
|
filter_size=3, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act='relu', |
|
name=name + '_layer_' + str(i + 1))) |
|
else: |
|
residual = self.add_sublayer( |
|
"transition_{}_layer_{}".format(name, i + 1), |
|
ConvNormLayer( |
|
ch_in=in_channels[-1], |
|
ch_out=out_channels[i], |
|
filter_size=3, |
|
stride=2, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act='relu', |
|
name=name + '_layer_' + str(i + 1))) |
|
self.conv_bn_func_list.append(residual) |
|
|
|
def forward(self, input): |
|
outs = [] |
|
for idx, conv_bn_func in enumerate(self.conv_bn_func_list): |
|
if conv_bn_func is None: |
|
outs.append(input[idx]) |
|
else: |
|
if idx < len(input): |
|
outs.append(conv_bn_func(input[idx])) |
|
else: |
|
outs.append(conv_bn_func(input[-1])) |
|
return outs |
|
|
|
|
|
class Branches(nn.Layer): |
|
def __init__(self, |
|
block_num, |
|
in_channels, |
|
out_channels, |
|
has_se=False, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(Branches, self).__init__() |
|
|
|
self.basic_block_list = [] |
|
for i in range(len(out_channels)): |
|
self.basic_block_list.append([]) |
|
for j in range(block_num): |
|
in_ch = in_channels[i] if j == 0 else out_channels[i] |
|
basic_block_func = self.add_sublayer( |
|
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1), |
|
BasicBlock( |
|
num_channels=in_ch, |
|
num_filters=out_channels[i], |
|
has_se=has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + '_branch_layer_' + str(i + 1) + '_' + |
|
str(j + 1))) |
|
self.basic_block_list[i].append(basic_block_func) |
|
|
|
def forward(self, inputs): |
|
outs = [] |
|
for idx, input in enumerate(inputs): |
|
conv = input |
|
basic_block_list = self.basic_block_list[idx] |
|
for basic_block_func in basic_block_list: |
|
conv = basic_block_func(conv) |
|
outs.append(conv) |
|
return outs |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
has_se, |
|
stride=1, |
|
downsample=False, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
self.has_se = has_se |
|
self.downsample = downsample |
|
|
|
self.conv1 = ConvNormLayer( |
|
ch_in=num_channels, |
|
ch_out=num_filters, |
|
filter_size=1, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act="relu", |
|
name=name + "_conv1") |
|
self.conv2 = ConvNormLayer( |
|
ch_in=num_filters, |
|
ch_out=num_filters, |
|
filter_size=3, |
|
stride=stride, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act="relu", |
|
name=name + "_conv2") |
|
self.conv3 = ConvNormLayer( |
|
ch_in=num_filters, |
|
ch_out=num_filters * 4, |
|
filter_size=1, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act=None, |
|
name=name + "_conv3") |
|
|
|
if self.downsample: |
|
self.conv_down = ConvNormLayer( |
|
ch_in=num_channels, |
|
ch_out=num_filters * 4, |
|
filter_size=1, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act=None, |
|
name=name + "_downsample") |
|
|
|
if self.has_se: |
|
self.se = SELayer( |
|
num_channels=num_filters * 4, |
|
num_filters=num_filters * 4, |
|
reduction_ratio=16, |
|
name='fc' + name) |
|
|
|
def forward(self, input): |
|
residual = input |
|
conv1 = self.conv1(input) |
|
conv2 = self.conv2(conv1) |
|
conv3 = self.conv3(conv2) |
|
|
|
if self.downsample: |
|
residual = self.conv_down(input) |
|
|
|
if self.has_se: |
|
conv3 = self.se(conv3) |
|
|
|
y = paddle.add(x=residual, y=conv3) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride=1, |
|
has_se=False, |
|
downsample=False, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(BasicBlock, self).__init__() |
|
|
|
self.has_se = has_se |
|
self.downsample = downsample |
|
self.conv1 = ConvNormLayer( |
|
ch_in=num_channels, |
|
ch_out=num_filters, |
|
filter_size=3, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
stride=stride, |
|
act="relu", |
|
name=name + "_conv1") |
|
self.conv2 = ConvNormLayer( |
|
ch_in=num_filters, |
|
ch_out=num_filters, |
|
filter_size=3, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
stride=1, |
|
act=None, |
|
name=name + "_conv2") |
|
|
|
if self.downsample: |
|
self.conv_down = ConvNormLayer( |
|
ch_in=num_channels, |
|
ch_out=num_filters * 4, |
|
filter_size=1, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act=None, |
|
name=name + "_downsample") |
|
|
|
if self.has_se: |
|
self.se = SELayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters, |
|
reduction_ratio=16, |
|
name='fc' + name) |
|
|
|
def forward(self, input): |
|
residual = input |
|
conv1 = self.conv1(input) |
|
conv2 = self.conv2(conv1) |
|
|
|
if self.downsample: |
|
residual = self.conv_down(input) |
|
|
|
if self.has_se: |
|
conv2 = self.se(conv2) |
|
|
|
y = paddle.add(x=residual, y=conv2) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class SELayer(nn.Layer): |
|
def __init__(self, num_channels, num_filters, reduction_ratio, name=None): |
|
super(SELayer, self).__init__() |
|
|
|
self.pool2d_gap = AdaptiveAvgPool2D(1) |
|
|
|
self._num_channels = num_channels |
|
|
|
med_ch = int(num_channels / reduction_ratio) |
|
stdv = 1.0 / math.sqrt(num_channels * 1.0) |
|
self.squeeze = Linear( |
|
num_channels, |
|
med_ch, |
|
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) |
|
|
|
stdv = 1.0 / math.sqrt(med_ch * 1.0) |
|
self.excitation = Linear( |
|
med_ch, |
|
num_filters, |
|
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) |
|
|
|
def forward(self, input): |
|
pool = self.pool2d_gap(input) |
|
pool = paddle.squeeze(pool, axis=[2, 3]) |
|
squeeze = self.squeeze(pool) |
|
squeeze = F.relu(squeeze) |
|
excitation = self.excitation(squeeze) |
|
excitation = F.sigmoid(excitation) |
|
excitation = paddle.unsqueeze(excitation, axis=[2, 3]) |
|
out = input * excitation |
|
return out |
|
|
|
|
|
class Stage(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_modules, |
|
num_filters, |
|
has_se=False, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
multi_scale_output=True, |
|
name=None): |
|
super(Stage, self).__init__() |
|
|
|
self._num_modules = num_modules |
|
self.stage_func_list = [] |
|
for i in range(num_modules): |
|
if i == num_modules - 1 and not multi_scale_output: |
|
stage_func = self.add_sublayer( |
|
"stage_{}_{}".format(name, i + 1), |
|
HighResolutionModule( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
has_se=has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
multi_scale_output=False, |
|
name=name + '_' + str(i + 1))) |
|
else: |
|
stage_func = self.add_sublayer( |
|
"stage_{}_{}".format(name, i + 1), |
|
HighResolutionModule( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
has_se=has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + '_' + str(i + 1))) |
|
|
|
self.stage_func_list.append(stage_func) |
|
|
|
def forward(self, input): |
|
out = input |
|
for idx in range(self._num_modules): |
|
out = self.stage_func_list[idx](out) |
|
return out |
|
|
|
|
|
class HighResolutionModule(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
has_se=False, |
|
multi_scale_output=True, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(HighResolutionModule, self).__init__() |
|
self.branches_func = Branches( |
|
block_num=4, |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
has_se=has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name) |
|
|
|
self.fuse_func = FuseLayers( |
|
in_channels=num_filters, |
|
out_channels=num_filters, |
|
multi_scale_output=multi_scale_output, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name) |
|
|
|
def forward(self, input): |
|
out = self.branches_func(input) |
|
out = self.fuse_func(out) |
|
return out |
|
|
|
|
|
class FuseLayers(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
multi_scale_output=True, |
|
norm_decay=0., |
|
freeze_norm=True, |
|
name=None): |
|
super(FuseLayers, self).__init__() |
|
|
|
self._actual_ch = len(in_channels) if multi_scale_output else 1 |
|
self._in_channels = in_channels |
|
|
|
self.residual_func_list = [] |
|
for i in range(self._actual_ch): |
|
for j in range(len(in_channels)): |
|
residual_func = None |
|
if j > i: |
|
residual_func = self.add_sublayer( |
|
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1), |
|
ConvNormLayer( |
|
ch_in=in_channels[j], |
|
ch_out=out_channels[i], |
|
filter_size=1, |
|
stride=1, |
|
act=None, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + '_layer_' + str(i + 1) + '_' + |
|
str(j + 1))) |
|
self.residual_func_list.append(residual_func) |
|
elif j < i: |
|
pre_num_filters = in_channels[j] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
residual_func = self.add_sublayer( |
|
"residual_{}_layer_{}_{}_{}".format( |
|
name, i + 1, j + 1, k + 1), |
|
ConvNormLayer( |
|
ch_in=pre_num_filters, |
|
ch_out=out_channels[i], |
|
filter_size=3, |
|
stride=2, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act=None, |
|
name=name + '_layer_' + str(i + 1) + '_' + |
|
str(j + 1) + '_' + str(k + 1))) |
|
pre_num_filters = out_channels[i] |
|
else: |
|
residual_func = self.add_sublayer( |
|
"residual_{}_layer_{}_{}_{}".format( |
|
name, i + 1, j + 1, k + 1), |
|
ConvNormLayer( |
|
ch_in=pre_num_filters, |
|
ch_out=out_channels[j], |
|
filter_size=3, |
|
stride=2, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act="relu", |
|
name=name + '_layer_' + str(i + 1) + '_' + |
|
str(j + 1) + '_' + str(k + 1))) |
|
pre_num_filters = out_channels[j] |
|
self.residual_func_list.append(residual_func) |
|
|
|
def forward(self, input): |
|
outs = [] |
|
residual_func_idx = 0 |
|
for i in range(self._actual_ch): |
|
residual = input[i] |
|
for j in range(len(self._in_channels)): |
|
if j > i: |
|
y = self.residual_func_list[residual_func_idx](input[j]) |
|
residual_func_idx += 1 |
|
y = F.interpolate(y, scale_factor=2**(j - i)) |
|
residual = paddle.add(x=residual, y=y) |
|
elif j < i: |
|
y = input[j] |
|
for k in range(i - j): |
|
y = self.residual_func_list[residual_func_idx](y) |
|
residual_func_idx += 1 |
|
|
|
residual = paddle.add(x=residual, y=y) |
|
residual = F.relu(residual) |
|
outs.append(residual) |
|
|
|
return outs |
|
|
|
|
|
@register |
|
class HRNet(nn.Layer): |
|
""" |
|
HRNet, see https://arxiv.org/abs/1908.07919 |
|
|
|
Args: |
|
width (int): the width of HRNet |
|
has_se (bool): whether to add SE block for each stage |
|
freeze_at (int): the stage to freeze |
|
freeze_norm (bool): whether to freeze norm in HRNet |
|
norm_decay (float): weight decay for normalization layer weights |
|
return_idx (List): the stage to return |
|
upsample (bool): whether to upsample and concat the backbone feats |
|
""" |
|
|
|
def __init__(self, |
|
width=18, |
|
has_se=False, |
|
freeze_at=0, |
|
freeze_norm=True, |
|
norm_decay=0., |
|
return_idx=[0, 1, 2, 3], |
|
upsample=False): |
|
super(HRNet, self).__init__() |
|
|
|
self.width = width |
|
self.has_se = has_se |
|
if isinstance(return_idx, Integral): |
|
return_idx = [return_idx] |
|
|
|
assert len(return_idx) > 0, "need one or more return index" |
|
self.freeze_at = freeze_at |
|
self.return_idx = return_idx |
|
self.upsample = upsample |
|
|
|
self.channels = { |
|
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]], |
|
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]], |
|
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]], |
|
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]], |
|
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]], |
|
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]], |
|
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]], |
|
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]] |
|
} |
|
|
|
channels_2, channels_3, channels_4 = self.channels[width] |
|
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3 |
|
self._out_channels = [sum(channels_4)] if self.upsample else channels_4 |
|
self._out_strides = [4] if self.upsample else [4, 8, 16, 32] |
|
|
|
self.conv_layer1_1 = ConvNormLayer( |
|
ch_in=3, |
|
ch_out=64, |
|
filter_size=3, |
|
stride=2, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act='relu', |
|
name="layer1_1") |
|
|
|
self.conv_layer1_2 = ConvNormLayer( |
|
ch_in=64, |
|
ch_out=64, |
|
filter_size=3, |
|
stride=2, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
act='relu', |
|
name="layer1_2") |
|
|
|
self.la1 = Layer1( |
|
num_channels=64, |
|
has_se=has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="layer2") |
|
|
|
self.tr1 = TransitionLayer( |
|
in_channels=[256], |
|
out_channels=channels_2, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="tr1") |
|
|
|
self.st2 = Stage( |
|
num_channels=channels_2, |
|
num_modules=num_modules_2, |
|
num_filters=channels_2, |
|
has_se=self.has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="st2") |
|
|
|
self.tr2 = TransitionLayer( |
|
in_channels=channels_2, |
|
out_channels=channels_3, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="tr2") |
|
|
|
self.st3 = Stage( |
|
num_channels=channels_3, |
|
num_modules=num_modules_3, |
|
num_filters=channels_3, |
|
has_se=self.has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="st3") |
|
|
|
self.tr3 = TransitionLayer( |
|
in_channels=channels_3, |
|
out_channels=channels_4, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="tr3") |
|
self.st4 = Stage( |
|
num_channels=channels_4, |
|
num_modules=num_modules_4, |
|
num_filters=channels_4, |
|
has_se=self.has_se, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
multi_scale_output=len(return_idx) > 1, |
|
name="st4") |
|
|
|
def forward(self, inputs): |
|
x = inputs['image'] |
|
conv1 = self.conv_layer1_1(x) |
|
conv2 = self.conv_layer1_2(conv1) |
|
|
|
la1 = self.la1(conv2) |
|
tr1 = self.tr1([la1]) |
|
st2 = self.st2(tr1) |
|
tr2 = self.tr2(st2) |
|
|
|
st3 = self.st3(tr2) |
|
tr3 = self.tr3(st3) |
|
|
|
st4 = self.st4(tr3) |
|
|
|
if self.upsample: |
|
# Upsampling |
|
x0_h, x0_w = st4[0].shape[2:4] |
|
x1 = F.upsample(st4[1], size=(x0_h, x0_w), mode='bilinear') |
|
x2 = F.upsample(st4[2], size=(x0_h, x0_w), mode='bilinear') |
|
x3 = F.upsample(st4[3], size=(x0_h, x0_w), mode='bilinear') |
|
x = paddle.concat([st4[0], x1, x2, x3], 1) |
|
return x |
|
|
|
res = [] |
|
for i, layer in enumerate(st4): |
|
if i == self.freeze_at: |
|
layer.stop_gradient = True |
|
if i in self.return_idx: |
|
res.append(layer) |
|
|
|
return res |
|
|
|
@property |
|
def out_shape(self): |
|
if self.upsample: |
|
self.return_idx = [0] |
|
return [ |
|
ShapeSpec( |
|
channels=self._out_channels[i], stride=self._out_strides[i]) |
|
for i in self.return_idx |
|
]
|
|
|