You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

302 lines
10 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import traceback
import six
import sys
if sys.version_info >= (3, 0):
pass
else:
pass
import numpy as np
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.fluid.dataloader.collate import default_collate_fn
from paddlers.models.ppdet.core.workspace import register
from . import transform
from .shm_utils import _get_shared_memory_size_in_M
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger('reader')
MAIN_PID = os.getpid()
class Compose(object):
def __init__(self, transforms, num_classes=80):
self.transforms = transforms
self.transforms_cls = []
for t in self.transforms:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.transforms_cls.append(f)
def __call__(self, data):
for f in self.transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map sample transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
return data
class BatchCompose(Compose):
def __init__(self, transforms, num_classes=80, collate_batch=True):
super(BatchCompose, self).__init__(transforms, num_classes)
self.collate_batch = collate_batch
def __call__(self, data):
for f in self.transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map batch transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
# remove keys which is not needed by model
extra_key = ['h', 'w', 'flipped']
for k in extra_key:
for sample in data:
if k in sample:
sample.pop(k)
# batch data, if user-define batch function needed
# use user-defined here
if self.collate_batch:
batch_data = default_collate_fn(data)
else:
batch_data = {}
for k in data[0].keys():
tmp_data = []
for i in range(len(data)):
tmp_data.append(data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
batch_data[k] = tmp_data
return batch_data
class BaseDataLoader(object):
"""
Base DataLoader implementation for detection models
Args:
sample_transforms (list): a list of transforms to perform
on each sample
batch_transforms (list): a list of transforms to perform
on batch
batch_size (int): batch size for batch collating, default 1.
shuffle (bool): whether to shuffle samples
drop_last (bool): whether to drop the last incomplete,
default False
num_classes (int): class number of dataset, default 80
collate_batch (bool): whether to collate batch in dataloader.
If set to True, the samples will collate into batch according
to the batch size. Otherwise, the ground-truth will not collate,
which is used when the number of ground-truch is different in
samples.
use_shared_memory (bool): whether to use shared memory to
accelerate data loading, enable this only if you
are sure that the shared memory size of your OS
is larger than memory cost of input datas of model.
Note that shared memory will be automatically
disabled if the shared memory of OS is less than
1G, which is not enough for detection models.
Default False.
"""
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
collate_batch=True,
use_shared_memory=False,
**kwargs):
# sample transform
self._sample_transforms = Compose(
sample_transforms, num_classes=num_classes)
# batch transfrom
self._batch_transforms = BatchCompose(batch_transforms, num_classes,
collate_batch)
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
self.use_shared_memory = use_shared_memory
self.kwargs = kwargs
def __call__(self,
dataset,
worker_num,
batch_sampler=None,
return_list=False):
self.dataset = dataset
self.dataset.check_or_download_dataset()
self.dataset.parse_dataset()
# get data
self.dataset.set_transform(self._sample_transforms)
# set kwargs
self.dataset.set_kwargs(**self.kwargs)
# batch sampler
if batch_sampler is None:
self._batch_sampler = DistributedBatchSampler(
self.dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler = batch_sampler
# DataLoader do not start sub-process in Windows and Mac
# system, do not need to use shared memory
use_shared_memory = self.use_shared_memory and \
sys.platform not in ['win32', 'darwin']
# check whether shared memory size is bigger than 1G(1024M)
if use_shared_memory:
shm_size = _get_shared_memory_size_in_M()
if shm_size is not None and shm_size < 1024.:
logger.warning("Shared memory size is less than 1G, "
"disable shared_memory in DataLoader")
use_shared_memory = False
self.dataloader = DataLoader(
dataset=self.dataset,
batch_sampler=self._batch_sampler,
collate_fn=self._batch_transforms,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.loader = iter(self.dataloader)
return self
def __len__(self):
return len(self._batch_sampler)
def __iter__(self):
return self
def __next__(self):
try:
return next(self.loader)
except StopIteration:
self.loader = iter(self.dataloader)
six.reraise(*sys.exc_info())
def next(self):
# python2 compatibility
return self.__next__()
@register
class TrainReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
**kwargs):
super(TrainReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, collate_batch, **kwargs)
@register
class EvalReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=True,
num_classes=80,
**kwargs):
super(EvalReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class TestReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
**kwargs):
super(TestReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class EvalMOTReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=1,
**kwargs):
super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class TestMOTReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=1,
**kwargs):
super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)