You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
302 lines
10 KiB
302 lines
10 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import traceback |
|
import six |
|
import sys |
|
if sys.version_info >= (3, 0): |
|
pass |
|
else: |
|
pass |
|
import numpy as np |
|
|
|
from paddle.io import DataLoader, DistributedBatchSampler |
|
from paddle.fluid.dataloader.collate import default_collate_fn |
|
|
|
from paddlers.models.ppdet.core.workspace import register |
|
from . import transform |
|
from .shm_utils import _get_shared_memory_size_in_M |
|
|
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger('reader') |
|
|
|
MAIN_PID = os.getpid() |
|
|
|
|
|
class Compose(object): |
|
def __init__(self, transforms, num_classes=80): |
|
self.transforms = transforms |
|
self.transforms_cls = [] |
|
for t in self.transforms: |
|
for k, v in t.items(): |
|
op_cls = getattr(transform, k) |
|
f = op_cls(**v) |
|
if hasattr(f, 'num_classes'): |
|
f.num_classes = num_classes |
|
|
|
self.transforms_cls.append(f) |
|
|
|
def __call__(self, data): |
|
for f in self.transforms_cls: |
|
try: |
|
data = f(data) |
|
except Exception as e: |
|
stack_info = traceback.format_exc() |
|
logger.warning("fail to map sample transform [{}] " |
|
"with error: {} and stack:\n{}".format( |
|
f, e, str(stack_info))) |
|
raise e |
|
|
|
return data |
|
|
|
|
|
class BatchCompose(Compose): |
|
def __init__(self, transforms, num_classes=80, collate_batch=True): |
|
super(BatchCompose, self).__init__(transforms, num_classes) |
|
self.collate_batch = collate_batch |
|
|
|
def __call__(self, data): |
|
for f in self.transforms_cls: |
|
try: |
|
data = f(data) |
|
except Exception as e: |
|
stack_info = traceback.format_exc() |
|
logger.warning("fail to map batch transform [{}] " |
|
"with error: {} and stack:\n{}".format( |
|
f, e, str(stack_info))) |
|
raise e |
|
|
|
# remove keys which is not needed by model |
|
extra_key = ['h', 'w', 'flipped'] |
|
for k in extra_key: |
|
for sample in data: |
|
if k in sample: |
|
sample.pop(k) |
|
|
|
# batch data, if user-define batch function needed |
|
# use user-defined here |
|
if self.collate_batch: |
|
batch_data = default_collate_fn(data) |
|
else: |
|
batch_data = {} |
|
for k in data[0].keys(): |
|
tmp_data = [] |
|
for i in range(len(data)): |
|
tmp_data.append(data[i][k]) |
|
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k: |
|
tmp_data = np.stack(tmp_data, axis=0) |
|
batch_data[k] = tmp_data |
|
return batch_data |
|
|
|
|
|
class BaseDataLoader(object): |
|
""" |
|
Base DataLoader implementation for detection models |
|
|
|
Args: |
|
sample_transforms (list): a list of transforms to perform |
|
on each sample |
|
batch_transforms (list): a list of transforms to perform |
|
on batch |
|
batch_size (int): batch size for batch collating, default 1. |
|
shuffle (bool): whether to shuffle samples |
|
drop_last (bool): whether to drop the last incomplete, |
|
default False |
|
num_classes (int): class number of dataset, default 80 |
|
collate_batch (bool): whether to collate batch in dataloader. |
|
If set to True, the samples will collate into batch according |
|
to the batch size. Otherwise, the ground-truth will not collate, |
|
which is used when the number of ground-truch is different in |
|
samples. |
|
use_shared_memory (bool): whether to use shared memory to |
|
accelerate data loading, enable this only if you |
|
are sure that the shared memory size of your OS |
|
is larger than memory cost of input datas of model. |
|
Note that shared memory will be automatically |
|
disabled if the shared memory of OS is less than |
|
1G, which is not enough for detection models. |
|
Default False. |
|
""" |
|
|
|
def __init__(self, |
|
sample_transforms=[], |
|
batch_transforms=[], |
|
batch_size=1, |
|
shuffle=False, |
|
drop_last=False, |
|
num_classes=80, |
|
collate_batch=True, |
|
use_shared_memory=False, |
|
**kwargs): |
|
# sample transform |
|
self._sample_transforms = Compose( |
|
sample_transforms, num_classes=num_classes) |
|
|
|
# batch transfrom |
|
self._batch_transforms = BatchCompose(batch_transforms, num_classes, |
|
collate_batch) |
|
self.batch_size = batch_size |
|
self.shuffle = shuffle |
|
self.drop_last = drop_last |
|
self.use_shared_memory = use_shared_memory |
|
self.kwargs = kwargs |
|
|
|
def __call__(self, |
|
dataset, |
|
worker_num, |
|
batch_sampler=None, |
|
return_list=False): |
|
self.dataset = dataset |
|
self.dataset.check_or_download_dataset() |
|
self.dataset.parse_dataset() |
|
# get data |
|
self.dataset.set_transform(self._sample_transforms) |
|
# set kwargs |
|
self.dataset.set_kwargs(**self.kwargs) |
|
# batch sampler |
|
if batch_sampler is None: |
|
self._batch_sampler = DistributedBatchSampler( |
|
self.dataset, |
|
batch_size=self.batch_size, |
|
shuffle=self.shuffle, |
|
drop_last=self.drop_last) |
|
else: |
|
self._batch_sampler = batch_sampler |
|
|
|
# DataLoader do not start sub-process in Windows and Mac |
|
# system, do not need to use shared memory |
|
use_shared_memory = self.use_shared_memory and \ |
|
sys.platform not in ['win32', 'darwin'] |
|
# check whether shared memory size is bigger than 1G(1024M) |
|
if use_shared_memory: |
|
shm_size = _get_shared_memory_size_in_M() |
|
if shm_size is not None and shm_size < 1024.: |
|
logger.warning("Shared memory size is less than 1G, " |
|
"disable shared_memory in DataLoader") |
|
use_shared_memory = False |
|
|
|
self.dataloader = DataLoader( |
|
dataset=self.dataset, |
|
batch_sampler=self._batch_sampler, |
|
collate_fn=self._batch_transforms, |
|
num_workers=worker_num, |
|
return_list=return_list, |
|
use_shared_memory=use_shared_memory) |
|
self.loader = iter(self.dataloader) |
|
|
|
return self |
|
|
|
def __len__(self): |
|
return len(self._batch_sampler) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
try: |
|
return next(self.loader) |
|
except StopIteration: |
|
self.loader = iter(self.dataloader) |
|
six.reraise(*sys.exc_info()) |
|
|
|
def next(self): |
|
# python2 compatibility |
|
return self.__next__() |
|
|
|
|
|
@register |
|
class TrainReader(BaseDataLoader): |
|
__shared__ = ['num_classes'] |
|
|
|
def __init__(self, |
|
sample_transforms=[], |
|
batch_transforms=[], |
|
batch_size=1, |
|
shuffle=True, |
|
drop_last=True, |
|
num_classes=80, |
|
collate_batch=True, |
|
**kwargs): |
|
super(TrainReader, self).__init__(sample_transforms, batch_transforms, |
|
batch_size, shuffle, drop_last, |
|
num_classes, collate_batch, **kwargs) |
|
|
|
|
|
@register |
|
class EvalReader(BaseDataLoader): |
|
__shared__ = ['num_classes'] |
|
|
|
def __init__(self, |
|
sample_transforms=[], |
|
batch_transforms=[], |
|
batch_size=1, |
|
shuffle=False, |
|
drop_last=True, |
|
num_classes=80, |
|
**kwargs): |
|
super(EvalReader, self).__init__(sample_transforms, batch_transforms, |
|
batch_size, shuffle, drop_last, |
|
num_classes, **kwargs) |
|
|
|
|
|
@register |
|
class TestReader(BaseDataLoader): |
|
__shared__ = ['num_classes'] |
|
|
|
def __init__(self, |
|
sample_transforms=[], |
|
batch_transforms=[], |
|
batch_size=1, |
|
shuffle=False, |
|
drop_last=False, |
|
num_classes=80, |
|
**kwargs): |
|
super(TestReader, self).__init__(sample_transforms, batch_transforms, |
|
batch_size, shuffle, drop_last, |
|
num_classes, **kwargs) |
|
|
|
|
|
@register |
|
class EvalMOTReader(BaseDataLoader): |
|
__shared__ = ['num_classes'] |
|
|
|
def __init__(self, |
|
sample_transforms=[], |
|
batch_transforms=[], |
|
batch_size=1, |
|
shuffle=False, |
|
drop_last=False, |
|
num_classes=1, |
|
**kwargs): |
|
super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms, |
|
batch_size, shuffle, drop_last, |
|
num_classes, **kwargs) |
|
|
|
|
|
@register |
|
class TestMOTReader(BaseDataLoader): |
|
__shared__ = ['num_classes'] |
|
|
|
def __init__(self, |
|
sample_transforms=[], |
|
batch_transforms=[], |
|
batch_size=1, |
|
shuffle=False, |
|
drop_last=False, |
|
num_classes=1, |
|
**kwargs): |
|
super(TestMOTReader, self).__init__(sample_transforms, batch_transforms, |
|
batch_size, shuffle, drop_last, |
|
num_classes, **kwargs)
|
|
|