You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

209 lines
7.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
import paddle
from paddle.distributed import fleet
from visualdl import LogWriter
from ppcls.data import build_dataloader
from ppcls.utils.config import get_config, print_config
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.static.save_load import init_model, save_model
from ppcls.static import program
def parse_args():
parser = argparse.ArgumentParser("PaddleClas train script")
parser.add_argument(
'-c',
'--config',
type=str,
default='configs/ResNet/ResNet50.yaml',
help='config file path')
parser.add_argument(
'-p',
'--profiler_options',
type=str,
default=None,
help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
)
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
"""
all the config of training paradigm should be in config["Global"]
"""
config = get_config(args.config, overrides=args.override, show=False)
global_config = config["Global"]
mode = "train"
log_file = os.path.join(global_config['output_dir'], config["Arch"]["name"],
f"{mode}.log")
init_logger(name='root', log_file=log_file)
print_config(config)
if global_config.get("is_distributed", True):
fleet.init(is_collective=True)
# assign the device
use_gpu = global_config.get("use_gpu", True)
# amp related config
if 'AMP' in config:
AMP_RELATED_FLAGS_SETTING = {
'FLAGS_cudnn_exhaustive_search': 1,
'FLAGS_conv_workspace_size_limit': 1500,
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
'FLAGS_max_inplace_grad_add': 8,
}
os.environ['FLAGS_cudnn_batchnorm_spatial_persistent'] = '1'
paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
use_xpu = global_config.get("use_xpu", False)
use_npu = global_config.get("use_npu", False)
assert (
use_gpu and use_xpu and use_npu
) is not True, "gpu, xpu and npu can not be true in the same time in static mode!"
if use_gpu:
device = paddle.set_device('gpu')
elif use_xpu:
device = paddle.set_device('xpu')
elif use_npu:
device = paddle.set_device('npu')
else:
device = paddle.set_device('cpu')
# visualDL
vdl_writer = None
if global_config["use_visualdl"]:
vdl_dir = os.path.join(global_config["output_dir"], "vdl")
vdl_writer = LogWriter(vdl_dir)
# build dataloader
eval_dataloader = None
use_dali = global_config.get('use_dali', False)
class_num = config["Arch"].get("class_num", None)
config["DataLoader"].update({"class_num": class_num})
train_dataloader = build_dataloader(
config["DataLoader"], "Train", device=device, use_dali=use_dali)
if global_config["eval_during_train"]:
eval_dataloader = build_dataloader(
config["DataLoader"], "Eval", device=device, use_dali=use_dali)
step_each_epoch = len(train_dataloader)
# startup_prog is used to do some parameter init work,
# and train prog is used to hold the network
startup_prog = paddle.static.Program()
train_prog = paddle.static.Program()
best_top1_acc = 0.0 # best top1 acc record
train_fetchs, lr_scheduler, train_feeds, optimizer = program.build(
config,
train_prog,
startup_prog,
class_num,
step_each_epoch=step_each_epoch,
is_train=True,
is_distributed=global_config.get("is_distributed", True))
if global_config["eval_during_train"]:
eval_prog = paddle.static.Program()
eval_fetchs, _, eval_feeds, _ = program.build(
config,
eval_prog,
startup_prog,
is_train=False,
is_distributed=global_config.get("is_distributed", True))
# clone to prune some content which is irrelevant in eval_prog
eval_prog = eval_prog.clone(for_test=True)
# create the "Executor" with the statement of which device
exe = paddle.static.Executor(device)
# Parameter initialization
exe.run(startup_prog)
# load pretrained models or checkpoints
init_model(global_config, train_prog, exe)
if 'AMP' in config and config.AMP.get("level", "O1") == "O2":
optimizer.amp_init(
device,
scope=paddle.static.global_scope(),
test_program=eval_prog
if global_config["eval_during_train"] else None)
if not global_config.get("is_distributed", True):
compiled_train_prog = program.compile(
config, train_prog, loss_name=train_fetchs["loss"][0].name)
else:
compiled_train_prog = train_prog
if eval_dataloader is not None:
compiled_eval_prog = program.compile(config, eval_prog)
for epoch_id in range(global_config["epochs"]):
# 1. train with train dataset
program.run(train_dataloader, exe, compiled_train_prog, train_feeds,
train_fetchs, epoch_id, 'train', config, vdl_writer,
lr_scheduler, args.profiler_options)
# 2. evaate with eval dataset
if global_config["eval_during_train"] and epoch_id % global_config[
"eval_interval"] == 0:
top1_acc = program.run(eval_dataloader, exe, compiled_eval_prog,
eval_feeds, eval_fetchs, epoch_id, "eval",
config)
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
logger.info(message)
if epoch_id % global_config["save_interval"] == 0:
model_path = os.path.join(global_config["output_dir"],
config["Arch"]["name"])
save_model(train_prog, model_path, "best_model")
# 3. save the persistable model
if epoch_id % global_config["save_interval"] == 0:
model_path = os.path.join(global_config["output_dir"],
config["Arch"]["name"])
save_model(train_prog, model_path, epoch_id)
if __name__ == '__main__':
paddle.enable_static()
args = parse_args()
main(args)