You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

82 lines
2.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from .comfunc import rerange_index
class TriHardLoss(paddle.nn.Layer):
"""
TriHard Loss, based on triplet loss. USE P * K samples.
the batch size is fixed. Batch_size = P * K; but the K may vary between batches.
same label gather together
supported_metrics = [
'euclidean',
'sqeuclidean',
'cityblock',
]
only consider samples_each_class = 2
"""
def __init__(self, batch_size=120, samples_each_class=2, margin=0.1):
super(TriHardLoss, self).__init__()
self.margin = margin
self.samples_each_class = samples_each_class
self.batch_size = batch_size
self.rerange_index = rerange_index(batch_size, samples_each_class)
def forward(self, input, target=None):
features = input["features"]
assert (self.batch_size == features.shape[0])
#normalization
features = self._nomalize(features)
samples_each_class = self.samples_each_class
rerange_index = paddle.to_tensor(self.rerange_index)
#calc sm
diffs = paddle.unsqueeze(
features, axis=1) - paddle.unsqueeze(
features, axis=0)
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1)
#rerange
tmp = paddle.reshape(similary_matrix, shape=[-1, 1])
tmp = paddle.gather(tmp, index=rerange_index)
similary_matrix = paddle.reshape(tmp, shape=[-1, self.batch_size])
#split
ignore, pos, neg = paddle.split(
similary_matrix,
num_or_sections=[1, samples_each_class - 1, -1],
axis=1)
ignore.stop_gradient = True
hard_pos = paddle.max(pos, axis=1)
hard_neg = paddle.min(neg, axis=1)
loss = hard_pos + self.margin - hard_neg
loss = paddle.nn.ReLU()(loss)
loss = paddle.mean(loss)
return {"trihardloss": loss}
def _nomalize(self, input):
input_norm = paddle.sqrt(
paddle.sum(paddle.square(input), axis=1, keepdim=True))
return paddle.divide(input, input_norm)