You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.7 KiB
78 lines
2.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import paddle |
|
from .comfunc import rerange_index |
|
|
|
|
|
class MSMLoss(paddle.nn.Layer): |
|
""" |
|
MSMLoss Loss, based on triplet loss. USE P * K samples. |
|
the batch size is fixed. Batch_size = P * K; but the K may vary between batches. |
|
same label gather together |
|
|
|
supported_metrics = [ |
|
'euclidean', |
|
'sqeuclidean', |
|
'cityblock', |
|
] |
|
only consider samples_each_class = 2 |
|
""" |
|
|
|
def __init__(self, batch_size=120, samples_each_class=2, margin=0.1): |
|
super(MSMLoss, self).__init__() |
|
self.margin = margin |
|
self.samples_each_class = samples_each_class |
|
self.batch_size = batch_size |
|
self.rerange_index = rerange_index(batch_size, samples_each_class) |
|
|
|
def forward(self, input, target=None): |
|
#normalization |
|
features = input["features"] |
|
features = self._nomalize(features) |
|
samples_each_class = self.samples_each_class |
|
rerange_index = paddle.to_tensor(self.rerange_index) |
|
|
|
#calc sm |
|
diffs = paddle.unsqueeze( |
|
features, axis=1) - paddle.unsqueeze( |
|
features, axis=0) |
|
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1) |
|
|
|
#rerange |
|
tmp = paddle.reshape(similary_matrix, shape=[-1, 1]) |
|
tmp = paddle.gather(tmp, index=rerange_index) |
|
similary_matrix = paddle.reshape(tmp, shape=[-1, self.batch_size]) |
|
|
|
#split |
|
ignore, pos, neg = paddle.split( |
|
similary_matrix, |
|
num_or_sections=[1, samples_each_class - 1, -1], |
|
axis=1) |
|
ignore.stop_gradient = True |
|
|
|
hard_pos = paddle.max(pos) |
|
hard_neg = paddle.min(neg) |
|
|
|
loss = hard_pos + self.margin - hard_neg |
|
loss = paddle.nn.ReLU()(loss) |
|
return {"msmloss": loss} |
|
|
|
def _nomalize(self, input): |
|
input_norm = paddle.sqrt( |
|
paddle.sum(paddle.square(input), axis=1, keepdim=True)) |
|
return paddle.divide(input, input_norm)
|
|
|