You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

174 lines
5.6 KiB

#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
from .celoss import CELoss
from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss
from .rkdloss import RKdAngle, RkdDistance
class DistillationCELoss(CELoss):
"""
DistillationCELoss
"""
def __init__(self,
model_name_pairs=[],
epsilon=None,
key=None,
name="loss_ce"):
super().__init__(epsilon=epsilon)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
return loss_dict
class DistillationGTCELoss(CELoss):
"""
DistillationGTCELoss
"""
def __init__(self,
model_names=[],
epsilon=None,
key=None,
name="loss_gt_ce"):
super().__init__(epsilon=epsilon)
assert isinstance(model_names, list)
self.key = key
self.model_names = model_names
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for name in self.model_names:
out = predicts[name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
for key in loss:
loss_dict["{}_{}".format(key, name)] = loss[key]
return loss_dict
class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self,
model_name_pairs=[],
act="softmax",
key=None,
name="loss_dml"):
super().__init__(act=act)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
return loss_dict
class DistillationDistanceLoss(DistanceLoss):
"""
"""
def __init__(self,
mode="l2",
model_name_pairs=[],
key=None,
name="loss_",
**kargs):
super().__init__(mode=mode, **kargs)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + mode
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
return loss_dict
class DistillationRKDLoss(nn.Layer):
def __init__(self,
target_size=None,
model_name_pairs=(["Student", "Teacher"], ),
student_keepkeys=[],
teacher_keepkeys=[]):
super().__init__()
self.student_keepkeys = student_keepkeys
self.teacher_keepkeys = teacher_keepkeys
self.model_name_pairs = model_name_pairs
assert len(self.student_keepkeys) == len(self.teacher_keepkeys)
self.rkd_angle_loss = RKdAngle(target_size=target_size)
self.rkd_dist_loss = RkdDistance(target_size=target_size)
def __call__(self, predicts, batch):
loss_dict = {}
for m1, m2 in self.model_name_pairs:
for idx, (
student_name, teacher_name
) in enumerate(zip(self.student_keepkeys, self.teacher_keepkeys)):
student_out = predicts[m1][student_name]
teacher_out = predicts[m2][teacher_name]
loss_dict[f"loss_angle_{idx}_{m1}_{m2}"] = self.rkd_angle_loss(
student_out, teacher_out)
loss_dict[f"loss_dist_{idx}_{m1}_{m2}"] = self.rkd_dist_loss(
student_out, teacher_out)
return loss_dict