You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

116 lines
4.3 KiB

#!/usr/bin/env python
import os
import random
import numpy as np
import paddle
import paddlers
from paddlers import transforms as T
from config_utils import parse_args, build_objects, CfgNode
def format_cfg(cfg, indent=0):
s = ''
if isinstance(cfg, dict):
for i, (k, v) in enumerate(sorted(cfg.items())):
s += ' ' * indent + str(k) + ': '
if isinstance(v, (dict, list, CfgNode)):
s += '\n' + format_cfg(v, indent=indent + 1)
else:
s += str(v)
if i != len(cfg) - 1:
s += '\n'
elif isinstance(cfg, list):
for i, v in enumerate(cfg):
s += ' ' * indent + '- '
if isinstance(v, (dict, list, CfgNode)):
s += '\n' + format_cfg(v, indent=indent + 1)
else:
s += str(v)
if i != len(cfg) - 1:
s += '\n'
elif isinstance(cfg, CfgNode):
s += ' ' * indent + f"type: {cfg.type}" + '\n'
s += ' ' * indent + f"module: {cfg.module}" + '\n'
s += ' ' * indent + 'args: \n' + format_cfg(cfg.args, indent + 1)
return s
if __name__ == '__main__':
CfgNode.set_context(globals())
cfg = parse_args()
print(format_cfg(cfg))
if cfg['seed'] is not None:
random.seed(cfg['seed'])
np.random.seed(cfg['seed'])
paddle.seed(cfg['seed'])
# Automatically download data
if cfg['download_on']:
paddlers.utils.download_and_decompress(
cfg['download_url'], path=cfg['download_path'])
if not isinstance(cfg['datasets']['eval'].args, dict):
raise ValueError("args of eval dataset must be a dict!")
if cfg['datasets']['eval'].args.get('transforms', None) is not None:
raise ValueError(
"Found key 'transforms' in args of eval dataset and the value is not None."
)
eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T))
# Inplace modification
cfg['datasets']['eval'].args['transforms'] = eval_transforms
eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets)
if cfg['cmd'] == 'train':
if not isinstance(cfg['datasets']['train'].args, dict):
raise ValueError("args of train dataset must be a dict!")
if cfg['datasets']['train'].args.get('transforms', None) is not None:
raise ValueError(
"Found key 'transforms' in args of train dataset and the value is not None."
)
train_transforms = T.Compose(
build_objects(
cfg['transforms']['train'], mod=T))
# Inplace modification
cfg['datasets']['train'].args['transforms'] = train_transforms
train_dataset = build_objects(
cfg['datasets']['train'], mod=paddlers.datasets)
model = build_objects(
cfg['model'], mod=getattr(paddlers.tasks, cfg['task']))
if cfg['optimizer']:
if len(cfg['optimizer'].args) == 0:
cfg['optimizer'].args = {}
if not isinstance(cfg['optimizer'].args, dict):
raise TypeError("args of optimizer must be a dict!")
if cfg['optimizer'].args.get('parameters', None) is not None:
raise ValueError(
"Found key 'parameters' in args of optimizer and the value is not None."
)
cfg['optimizer'].args['parameters'] = model.net.parameters()
optimizer = build_objects(cfg['optimizer'], mod=paddle.optimizer)
else:
optimizer = None
model.train(
num_epochs=cfg['num_epochs'],
train_dataset=train_dataset,
train_batch_size=cfg['train_batch_size'],
eval_dataset=eval_dataset,
optimizer=optimizer,
save_interval_epochs=cfg['save_interval_epochs'],
log_interval_steps=cfg['log_interval_steps'],
save_dir=cfg['save_dir'],
learning_rate=cfg['learning_rate'],
early_stop=cfg['early_stop'],
early_stop_patience=cfg['early_stop_patience'],
use_vdl=cfg['use_vdl'],
resume_checkpoint=cfg['resume_checkpoint'] or None,
**cfg['train'])
elif cfg['cmd'] == 'eval':
model = paddlers.tasks.load_model(cfg['resume_checkpoint'])
res = model.evaluate(eval_dataset)
print(res)