You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1076 lines
44 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import os.path as osp
from collections import OrderedDict
from operator import attrgetter
import cv2
import numpy as np
import paddle
import paddle.nn.functional as F
from paddle.static import InputSpec
import paddlers
import paddlers.models.ppseg as ppseg
import paddlers.rs_models.cd as cmcd
import paddlers.utils.logging as logging
from paddlers.models import seg_losses
from paddlers.transforms import Resize, decode_image
from paddlers.utils import get_single_card_bs
from paddlers.utils.checkpoint import cd_pretrain_weights_dict
from .base import BaseModel
from .utils import seg_metrics as metrics
from .utils.infer_nets import InferCDNet
from .utils.slider_predict import slider_predict
__all__ = [
"CDNet", "FCEarlyFusion", "FCSiamConc", "FCSiamDiff", "STANet", "BIT",
"SNUNet", "DSIFN", "DSAMNet", "ChangeStar", "ChangeFormer", "FCCDN"
]
class BaseChangeDetector(BaseModel):
def __init__(self,
model_name,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
del self.init_params['with_net']
super(BaseChangeDetector, self).__init__('change_detector')
self.model_name = model_name
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.losses = losses
self.labels = None
if params.get('with_net', True):
params.pop('with_net', None)
self.net = self.build_net(**params)
self.find_unused_parameters = True
def build_net(self, **params):
# TODO: add other model
net = cmcd.__dict__[self.model_name](num_classes=self.num_classes,
**params)
return net
def _build_inference_net(self):
infer_net = InferCDNet(self.net)
infer_net.eval()
return infer_net
def _fix_transforms_shape(self, image_shape):
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
has_resize_op = False
resize_op_idx = -1
normalize_op_idx = len(self.test_transforms.transforms)
for idx, op in enumerate(self.test_transforms.transforms):
name = op.__class__.__name__
if name == 'Normalize':
normalize_op_idx = idx
if 'Resize' in name:
has_resize_op = True
resize_op_idx = idx
if not has_resize_op:
self.test_transforms.transforms.insert(
normalize_op_idx, Resize(target_size=image_shape))
else:
self.test_transforms.transforms[resize_op_idx] = Resize(
target_size=image_shape)
def _get_test_inputs(self, image_shape):
if image_shape is not None:
if len(image_shape) == 2:
image_shape = [1, 3] + image_shape
self._fix_transforms_shape(image_shape[-2:])
else:
image_shape = [None, 3, -1, -1]
self.fixed_input_shape = image_shape
return [
InputSpec(
shape=image_shape, name='image', dtype='float32'), InputSpec(
shape=image_shape, name='image2', dtype='float32')
]
def run(self, net, inputs, mode):
net_out = net(inputs[0], inputs[1])
logit = net_out[0]
outputs = OrderedDict()
if mode == 'test':
origin_shape = inputs[2]
if self.status == 'Infer':
label_map_list, score_map_list = self.postprocess(
net_out, origin_shape, transforms=inputs[3])
else:
logit_list = self.postprocess(
logit, origin_shape, transforms=inputs[3])
label_map_list = []
score_map_list = []
for logit in logit_list:
logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
label_map_list.append(
paddle.argmax(
logit, axis=-1, keepdim=False, dtype='int32')
.squeeze().numpy())
score_map_list.append(
F.softmax(
logit, axis=-1).squeeze().numpy().astype('float32'))
outputs['label_map'] = label_map_list
outputs['score_map'] = score_map_list
if mode == 'eval':
if self.status == 'Infer':
pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
else:
pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
label = inputs[2]
if label.ndim == 3:
paddle.unsqueeze_(label, axis=1)
if label.ndim != 4:
raise ValueError("Expected label.ndim == 4 but got {}".format(
label.ndim))
origin_shape = [label.shape[-2:]]
pred = self.postprocess(
pred, origin_shape, transforms=inputs[3])[0] # NCHW
intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
pred, label, self.num_classes)
outputs['intersect_area'] = intersect_area
outputs['pred_area'] = pred_area
outputs['label_area'] = label_area
outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
self.num_classes)
if mode == 'train':
if hasattr(net, 'USE_MULTITASK_DECODER') and \
net.USE_MULTITASK_DECODER is True:
# CD+Seg
if len(inputs) != 5:
raise ValueError(
"Cannot perform loss computation with {} inputs.".
format(len(inputs)))
labels_list = [
inputs[2 + idx]
for idx in map(attrgetter('value'), net.OUT_TYPES)
]
loss_list = metrics.multitask_loss_computation(
logits_list=net_out,
labels_list=labels_list,
losses=self.losses)
else:
loss_list = metrics.loss_computation(
logits_list=net_out, labels=inputs[2], losses=self.losses)
loss = sum(loss_list)
outputs['loss'] = loss
return outputs
def default_loss(self):
if isinstance(self.use_mixed_loss, bool):
if self.use_mixed_loss:
losses = [
seg_losses.CrossEntropyLoss(),
seg_losses.LovaszSoftmaxLoss()
]
coef = [.8, .2]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
else:
loss_type = [seg_losses.CrossEntropyLoss()]
else:
losses, coef = list(zip(*self.use_mixed_loss))
if not set(losses).issubset(
['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
raise ValueError(
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
)
losses = [getattr(seg_losses, loss)() for loss in losses]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
loss_coef = [1.0]
losses = {'types': loss_type, 'coef': loss_coef}
return losses
def default_optimizer(self,
parameters,
learning_rate,
num_epochs,
num_steps_each_epoch,
lr_decay_power=0.9):
decay_step = num_epochs * num_steps_each_epoch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate, decay_step, end_lr=0, power=lr_decay_power)
optimizer = paddle.optimizer.Momentum(
learning_rate=lr_scheduler,
parameters=parameters,
momentum=0.9,
weight_decay=4e-5)
return optimizer
def train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights=None,
learning_rate=0.01,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None):
"""
Train the model.
Args:
num_epochs (int): Number of epochs.
train_dataset (paddlers.datasets.CDDataset): Training dataset.
train_batch_size (int, optional): Total batch size among all cards used in
training. Defaults to 2.
eval_dataset (paddlers.datasets.CDDataset|None, optional): Evaluation dataset.
If None, the model will not be evaluated during training process.
Defaults to None.
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
training. If None, a default optimizer will be used. Defaults to None.
save_interval_epochs (int, optional): Epoch interval for saving the model.
Defaults to 1.
log_interval_steps (int, optional): Step interval for printing training
information. Defaults to 2.
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
pretrain_weights (str|None, optional): None or name/path of pretrained
weights. If None, no pretrained weights will be loaded. Defaults to None.
learning_rate (float, optional): Learning rate for training. Defaults to .01.
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
early_stop (bool, optional): Whether to adopt early stop strategy. Defaults
to False.
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
process. Defaults to True.
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
training from. If None, no training checkpoint will be resumed. At most
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
Defaults to None.
"""
if self.status == 'Infer':
logging.error(
"Exported inference model does not support training.",
exit=True)
if pretrain_weights is not None and resume_checkpoint is not None:
logging.error(
"`pretrain_weights` and `resume_checkpoint` cannot be set simultaneously.",
exit=True)
self.labels = train_dataset.labels
if self.losses is None:
self.losses = self.default_loss()
if optimizer is None:
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
self.optimizer = self.default_optimizer(
self.net.parameters(), learning_rate, num_epochs,
num_steps_each_epoch, lr_decay_power)
else:
self.optimizer = optimizer
if pretrain_weights is not None:
if not osp.exists(pretrain_weights):
if self.model_name not in cd_pretrain_weights_dict:
logging.warning(
"Path of pretrained weights ('{}') does not exist!".
format(pretrain_weights))
pretrain_weights = None
elif pretrain_weights not in cd_pretrain_weights_dict[
self.model_name]:
logging.warning(
"Path of pretrained weights ('{}') does not exist!".
format(pretrain_weights))
pretrain_weights = cd_pretrain_weights_dict[
self.model_name][0]
logging.warning(
"`pretrain_weights` is forcibly set to '{}'. "
"If you don't want to use pretrained weights, "
"please set `pretrain_weights` to None.".format(
pretrain_weights))
else:
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
logging.error(
"Invalid pretrained weights. Please specify a .pdparams file.",
exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = pretrain_weights == 'IMAGENET'
self.initialize_net(
pretrain_weights=pretrain_weights,
save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint,
is_backbone_weights=is_backbone_weights)
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl)
def quant_aware_train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
learning_rate=0.0001,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None,
quant_config=None):
"""
Quantization-aware training.
Args:
num_epochs (int): Number of epochs.
train_dataset (paddlers.datasets.CDDataset): Training dataset.
train_batch_size (int, optional): Total batch size among all cards used in
training. Defaults to 2.
eval_dataset (paddlers.datasets.CDDataset, optional): Evaluation dataset.
If None, the model will not be evaluated during training process.
Defaults to None.
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
training. If None, a default optimizer will be used. Defaults to None.
save_interval_epochs (int, optional): Epoch interval for saving the model.
Defaults to 1.
log_interval_steps (int, optional): Step interval for printing training
information. Defaults to 2.
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
learning_rate (float, optional): Learning rate for training.
Defaults to .0001.
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
early_stop (bool, optional): Whether to adopt early stop strategy.
Defaults to False.
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
process. Defaults to True.
quant_config (dict|None, optional): Quantization configuration. If None,
a default rule of thumb configuration will be used. Defaults to None.
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
quantization-aware training from. If None, no training checkpoint will
be resumed. Defaults to None.
"""
self._prepare_qat(quant_config)
self.train(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
pretrain_weights=None,
learning_rate=learning_rate,
lr_decay_power=lr_decay_power,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl,
resume_checkpoint=resume_checkpoint)
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
"""
Evaluate the model.
Args:
eval_dataset (paddlers.datasets.CDDataset): Evaluation dataset.
batch_size (int, optional): Total batch size among all cards used for
evaluation. Defaults to 1.
return_details (bool, optional): Whether to return evaluation details.
Defaults to False.
Returns:
If `return_details` is False, return collections.OrderedDict with
key-value pairs:
For binary change detection (number of classes == 2), the key-value
pairs are like:
{"iou": intersection over union for the change class,
"f1": F1 score for the change class,
"oacc": overall accuracy,
"kappa": kappa coefficient}.
For multi-class change detection (number of classes > 2), the key-value
pairs are like:
{"miou": mean intersection over union,
"category_iou": category-wise mean intersection over union,
"oacc": overall accuracy,
"category_acc": category-wise accuracy,
"kappa": kappa coefficient,
"category_F1-score": F1 score}.
"""
self._check_transforms(eval_dataset.transforms, 'eval')
self.net.eval()
nranks = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
if nranks > 1:
# Initialize parallel environment if not done.
if not (paddle.distributed.parallel.parallel_helper.
_is_parallel_ctx_initialized()):
paddle.distributed.init_parallel_env()
batch_size_each_card = get_single_card_bs(batch_size)
if batch_size_each_card > 1:
batch_size_each_card = 1
batch_size = batch_size_each_card * paddlers.env_info['num']
logging.warning(
"ChangeDetector only supports batch_size=1 for each gpu/cpu card " \
"during evaluation, so batch_size " \
"is forcibly set to {}.".format(batch_size)
)
self.eval_data_loader = self.build_data_loader(
eval_dataset, batch_size=batch_size, mode='eval')
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
conf_mat_all = []
logging.info(
"Start to evaluate(total_samples={}, total_steps={})...".format(
eval_dataset.num_samples,
math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
with paddle.no_grad():
for step, data in enumerate(self.eval_data_loader):
data.append(eval_dataset.transforms.transforms)
outputs = self.run(self.net, data, 'eval')
pred_area = outputs['pred_area']
label_area = outputs['label_area']
intersect_area = outputs['intersect_area']
conf_mat = outputs['conf_mat']
# Gather from all ranks
if nranks > 1:
intersect_area_list = []
pred_area_list = []
label_area_list = []
conf_mat_list = []
paddle.distributed.all_gather(intersect_area_list,
intersect_area)
paddle.distributed.all_gather(pred_area_list, pred_area)
paddle.distributed.all_gather(label_area_list, label_area)
paddle.distributed.all_gather(conf_mat_list, conf_mat)
# Some image has been evaluated and should be eliminated in last iter
if (step + 1) * nranks > len(eval_dataset):
valid = len(eval_dataset) - step * nranks
intersect_area_list = intersect_area_list[:valid]
pred_area_list = pred_area_list[:valid]
label_area_list = label_area_list[:valid]
conf_mat_list = conf_mat_list[:valid]
intersect_area_all += sum(intersect_area_list)
pred_area_all += sum(pred_area_list)
label_area_all += sum(label_area_list)
conf_mat_all.extend(conf_mat_list)
else:
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
conf_mat_all.append(conf_mat)
class_iou, miou = ppseg.utils.metrics.mean_iou(
intersect_area_all, pred_area_all, label_area_all)
# TODO 确认是按oacc还是macc
class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
label_area_all)
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
label_area_all)
if len(class_acc) > 2:
eval_metrics = OrderedDict(
zip([
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
'category_F1-score'
], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
else:
eval_metrics = OrderedDict(
zip(['iou', 'f1', 'oacc', 'kappa'],
[class_iou[1], category_f1score[1], oacc, kappa]))
if return_details:
conf_mat = sum(conf_mat_all)
eval_details = {'confusion_matrix': conf_mat.tolist()}
return eval_metrics, eval_details
return eval_metrics
@paddle.no_grad()
def predict(self, img_file, transforms=None):
"""
Do inference.
Args:
img_file (list[tuple] | tuple[str|np.ndarray]): Tuple of image paths or
decoded image data for bi-temporal images, which also could constitute
a list, meaning all image pairs to be predicted as a mini-batch.
transforms (paddlers.transforms.Compose|None, optional): Transforms for
inputs. If None, the transforms for evaluation process will be used.
Defaults to None.
Returns:
If `img_file` is a tuple of string or np.array, the result is a dict with
the following key-value pairs:
label_map (np.ndarray): Predicted label map (HW).
score_map (np.ndarray): Prediction score map (HWC).
If `img_file` is a list, the result is a list composed of dicts with the
above keys.
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise ValueError("transforms need to be defined, now is None.")
if transforms is None:
transforms = self.test_transforms
if isinstance(img_file, tuple):
if not len(img_file) == 2 and any(
map(lambda obj: not isinstance(obj, (str, np.ndarray)),
img_file)):
raise TypeError
images = [img_file]
else:
images = img_file
batch_im1, batch_im2, batch_origin_shape = self.preprocess(
images, transforms, self.model_type)
self.net.eval()
data = (batch_im1, batch_im2, batch_origin_shape, transforms.transforms)
outputs = self.run(self.net, data, 'test')
label_map_list = outputs['label_map']
score_map_list = outputs['score_map']
if isinstance(img_file, list):
prediction = [{
'label_map': l,
'score_map': s
} for l, s in zip(label_map_list, score_map_list)]
else:
prediction = {
'label_map': label_map_list[0],
'score_map': score_map_list[0]
}
return prediction
def slider_predict(self,
img_files,
save_dir,
block_size,
overlap=36,
transforms=None,
invalid_value=255,
merge_strategy='keep_last',
batch_size=1,
quiet=False):
"""
Do inference using sliding windows.
Args:
img_files (tuple[str]): Tuple of image paths.
save_dir (str): Directory that contains saved geotiff file.
block_size (list[int] | tuple[int] | int):
Size of block. If `block_size` is a list or tuple, it should be in
(W, H) format.
overlap (list[int] | tuple[int] | int, optional):
Overlap between two blocks. If `overlap` is a list or tuple, it should
be in (W, H) format. Defaults to 36.
transforms (paddlers.transforms.Compose|None, optional): Transforms for
inputs. If None, the transforms for evaluation process will be used.
Defaults to None.
invalid_value (int, optional): Value that marks invalid pixels in output
image. Defaults to 255.
merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices
are {'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
means keeping the values of the first and the last block in traversal
order, respectively. 'accum' means determining the class of an overlapping
pixel according to accumulated probabilities. Defaults to 'keep_last'.
batch_size (int, optional): Batch size used in inference. Defaults to 1.
quiet (bool, optional): If True, disable the progress bar. Defaults to False.
"""
slider_predict(self.predict, img_files, save_dir, block_size, overlap,
transforms, invalid_value, merge_strategy, batch_size,
not quiet)
def preprocess(self, images, transforms, to_tensor=True):
self._check_transforms(transforms, 'test')
batch_im1, batch_im2 = list(), list()
batch_ori_shape = list()
for im1, im2 in images:
if isinstance(im1, str) or isinstance(im2, str):
im1 = decode_image(im1, read_raw=True)
im2 = decode_image(im2, read_raw=True)
ori_shape = im1.shape[:2]
# XXX: sample do not contain 'image_t1' and 'image_t2'.
sample = {'image': im1, 'image2': im2}
im1, im2 = transforms(sample)[:2]
batch_im1.append(im1)
batch_im2.append(im2)
batch_ori_shape.append(ori_shape)
if to_tensor:
batch_im1 = paddle.to_tensor(batch_im1)
batch_im2 = paddle.to_tensor(batch_im2)
else:
batch_im1 = np.asarray(batch_im1)
batch_im2 = np.asarray(batch_im2)
return batch_im1, batch_im2, batch_ori_shape
@staticmethod
def get_transforms_shape_info(batch_ori_shape, transforms):
batch_restore_list = list()
for ori_shape in batch_ori_shape:
restore_list = list()
h, w = ori_shape[0], ori_shape[1]
for op in transforms:
if op.__class__.__name__ == 'Resize':
restore_list.append(('resize', (h, w)))
h, w = op.target_size
elif op.__class__.__name__ == 'ResizeByShort':
restore_list.append(('resize', (h, w)))
im_short_size = min(h, w)
im_long_size = max(h, w)
scale = float(op.short_size) / float(im_short_size)
if 0 < op.max_size < np.round(scale * im_long_size):
scale = float(op.max_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'ResizeByLong':
restore_list.append(('resize', (h, w)))
im_long_size = max(h, w)
scale = float(op.long_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'Pad':
if op.target_size:
target_h, target_w = op.target_size
else:
target_h = int(
(np.ceil(h / op.size_divisor) * op.size_divisor))
target_w = int(
(np.ceil(w / op.size_divisor) * op.size_divisor))
if op.pad_mode == -1:
offsets = op.offsets
elif op.pad_mode == 0:
offsets = [0, 0]
elif op.pad_mode == 1:
offsets = [(target_h - h) // 2, (target_w - w) // 2]
else:
offsets = [target_h - h, target_w - w]
restore_list.append(('padding', (h, w), offsets))
h, w = target_h, target_w
batch_restore_list.append(restore_list)
return batch_restore_list
def postprocess(self, batch_pred, batch_origin_shape, transforms):
batch_restore_list = BaseChangeDetector.get_transforms_shape_info(
batch_origin_shape, transforms)
if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
return self._infer_postprocess(
batch_label_map=batch_pred[0],
batch_score_map=batch_pred[1],
batch_restore_list=batch_restore_list)
results = []
if batch_pred.dtype == paddle.float32:
mode = 'bilinear'
else:
mode = 'nearest'
for pred, restore_list in zip(batch_pred, batch_restore_list):
pred = paddle.unsqueeze(pred, axis=0)
for item in restore_list[::-1]:
h, w = item[1][0], item[1][1]
if item[0] == 'resize':
pred = F.interpolate(
pred, (h, w), mode=mode, data_format='NCHW')
elif item[0] == 'padding':
x, y = item[2]
pred = pred[:, :, y:y + h, x:x + w]
else:
pass
results.append(pred)
return results
def _infer_postprocess(self, batch_label_map, batch_score_map,
batch_restore_list):
label_maps = []
score_maps = []
for label_map, score_map, restore_list in zip(
batch_label_map, batch_score_map, batch_restore_list):
if not isinstance(label_map, np.ndarray):
label_map = paddle.unsqueeze(label_map, axis=[0, 3])
score_map = paddle.unsqueeze(score_map, axis=0)
for item in restore_list[::-1]:
h, w = item[1][0], item[1][1]
if item[0] == 'resize':
if isinstance(label_map, np.ndarray):
label_map = cv2.resize(
label_map, (w, h), interpolation=cv2.INTER_NEAREST)
score_map = cv2.resize(
score_map, (w, h), interpolation=cv2.INTER_LINEAR)
else:
label_map = F.interpolate(
label_map, (h, w),
mode='nearest',
data_format='NHWC')
score_map = F.interpolate(
score_map, (h, w),
mode='bilinear',
data_format='NHWC')
elif item[0] == 'padding':
x, y = item[2]
if isinstance(label_map, np.ndarray):
label_map = label_map[y:y + h, x:x + w]
score_map = score_map[y:y + h, x:x + w]
else:
label_map = label_map[:, y:y + h, x:x + w, :]
score_map = score_map[:, y:y + h, x:x + w, :]
else:
pass
label_map = label_map.squeeze()
score_map = score_map.squeeze()
if not isinstance(label_map, np.ndarray):
label_map = label_map.numpy()
score_map = score_map.numpy()
label_maps.append(label_map.squeeze())
score_maps.append(score_map.squeeze())
return label_maps, score_maps
def _check_transforms(self, transforms, mode):
super()._check_transforms(transforms, mode)
if not isinstance(transforms.arrange,
paddlers.transforms.ArrangeChangeDetector):
raise TypeError(
"`transforms.arrange` must be an ArrangeChangeDetector object.")
def set_losses(self, losses, weights=None):
if weights is None:
weights = [1. for _ in range(len(losses))]
self.losses = {'types': losses, 'coef': weights}
class CDNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=6,
**params):
params.update({'in_channels': in_channels})
super(CDNet, self).__init__(
model_name='CDNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FCEarlyFusion(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=6,
use_dropout=False,
**params):
params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
super(FCEarlyFusion, self).__init__(
model_name='FCEarlyFusion',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FCSiamConc(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
use_dropout=False,
**params):
params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
super(FCSiamConc, self).__init__(
model_name='FCSiamConc',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FCSiamDiff(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
use_dropout=False,
**params):
params.update({'in_channels': in_channels, 'use_dropout': use_dropout})
super(FCSiamDiff, self).__init__(
model_name='FCSiamDiff',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class STANet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
att_type='BAM',
ds_factor=1,
**params):
params.update({
'in_channels': in_channels,
'att_type': att_type,
'ds_factor': ds_factor
})
super(STANet, self).__init__(
model_name='STANet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class BIT(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
backbone='resnet18',
n_stages=4,
use_tokenizer=True,
token_len=4,
pool_mode='max',
pool_size=2,
enc_with_pos=True,
enc_depth=1,
enc_head_dim=64,
dec_depth=8,
dec_head_dim=8,
**params):
params.update({
'in_channels': in_channels,
'backbone': backbone,
'n_stages': n_stages,
'use_tokenizer': use_tokenizer,
'token_len': token_len,
'pool_mode': pool_mode,
'pool_size': pool_size,
'enc_with_pos': enc_with_pos,
'enc_depth': enc_depth,
'enc_head_dim': enc_head_dim,
'dec_depth': dec_depth,
'dec_head_dim': dec_head_dim
})
super(BIT, self).__init__(
model_name='BIT',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class SNUNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
width=32,
**params):
params.update({'in_channels': in_channels, 'width': width})
super(SNUNet, self).__init__(
model_name='SNUNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class DSIFN(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
use_dropout=False,
**params):
params.update({'use_dropout': use_dropout})
super(DSIFN, self).__init__(
model_name='DSIFN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
# XXX: make sure the shallow copy works correctly here.
'types': [seg_losses.CrossEntropyLoss()] * 5,
'coef': [1.0] * 5
}
else:
raise ValueError(
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
)
class DSAMNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
ca_ratio=8,
sa_kernel=7,
**params):
params.update({
'in_channels': in_channels,
'ca_ratio': ca_ratio,
'sa_kernel': sa_kernel
})
super(DSAMNet, self).__init__(
model_name='DSAMNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
'types': [
seg_losses.CrossEntropyLoss(), seg_losses.DiceLoss(),
seg_losses.DiceLoss()
],
'coef': [1.0, 0.05, 0.05]
}
else:
raise ValueError(
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
)
class ChangeStar(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
mid_channels=256,
inner_channels=16,
num_convs=4,
scale_factor=4.0,
**params):
params.update({
'mid_channels': mid_channels,
'inner_channels': inner_channels,
'num_convs': num_convs,
'scale_factor': scale_factor
})
super(ChangeStar, self).__init__(
model_name='ChangeStar',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
# XXX: make sure the shallow copy works correctly here.
'types': [seg_losses.CrossEntropyLoss()] * 4,
'coef': [1.0] * 4
}
else:
raise ValueError(
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
)
class ChangeFormer(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
decoder_softmax=False,
embed_dim=256,
**params):
params.update({
'in_channels': in_channels,
'embed_dim': embed_dim,
'decoder_softmax': decoder_softmax
})
super(ChangeFormer, self).__init__(
model_name='ChangeFormer',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FCCDN(BaseChangeDetector):
def __init__(self,
in_channels=3,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
params.update({'in_channels': in_channels})
super(FCCDN, self).__init__(
model_name='FCCDN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
'types':
[seg_losses.CrossEntropyLoss(), cmcd.losses.fccdn_ssl_loss],
'coef': [1.0, 0.2]
}
else:
raise ValueError(
f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
)