You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

83 lines
3.2 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import numpy as np
import paddlers.transforms as T
from testing_utils import CpuCommonTest
from data import build_input_from_file
__all__ = ['TestMatchHistograms', 'TestMatchByRegression']
def calc_err(a, b):
a = a.astype('float64')
b = b.astype('float64')
return np.abs(a - b).mean()
class TestMatchHistograms(CpuCommonTest):
def setUp(self):
self.inputs = [
build_input_from_file(
"data/ssmt/test_mixed_binary.txt", prefix="./data/ssmt")
]
def test_output_shape(self):
decoder = T.DecodeImg()
for input in copy.deepcopy(self.inputs):
for sample in input:
sample = decoder(sample)
im_out = T.functions.match_histograms(sample['image2'],
sample['image'])
self.check_output_equal(im_out.shape, sample['image2'].shape)
self.assertEqual(im_out.dtype, sample['image2'].dtype)
im_out = T.functions.match_histograms(sample['image'],
sample['image2'])
self.check_output_equal(im_out.shape, sample['image'].shape)
self.assertEqual(im_out.dtype, sample['image'].dtype)
class TestMatchByRegression(CpuCommonTest):
def setUp(self):
self.inputs = [
build_input_from_file(
"data/ssmt/test_mixed_binary.txt", prefix="./data/ssmt")
]
def test_output_shape(self):
decoder = T.DecodeImg()
for input in copy.deepcopy(self.inputs):
for sample in input:
sample = decoder(sample)
im_out = T.functions.match_by_regression(sample['image2'],
sample['image'])
self.check_output_equal(im_out.shape, sample['image2'].shape)
self.assertEqual(im_out.dtype, sample['image2'].dtype)
err1 = calc_err(sample['image'], sample['image2'])
err2 = calc_err(sample['image'], im_out)
self.assertLessEqual(err2, err1)
im_out = T.functions.match_by_regression(sample['image'],
sample['image2'])
self.check_output_equal(im_out.shape, sample['image'].shape)
self.assertEqual(im_out.dtype, sample['image'].dtype)
err1 = calc_err(sample['image'], sample['image2'])
err2 = calc_err(im_out, sample['image2'])
self.assertLessEqual(err2, err1)