You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

313 lines
11 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import copy
import numpy as np
import paddlers.transforms as T
from testing_utils import CpuCommonTest
from data import build_input_from_file
__all__ = ['TestTransform', 'TestCompose', 'TestArrange']
WHITE_LIST = []
def _add_op_tests(cls):
"""
Automatically patch testing functions for transform operators.
"""
for op_name in T.operators.__all__:
op_class = getattr(T.operators, op_name)
if isinstance(op_class, type) and issubclass(op_class,
T.operators.Transform):
if op_class is T.DecodeImg or op_class in WHITE_LIST or op_name in WHITE_LIST:
continue
attr_name = 'test_' + op_name
if hasattr(cls, attr_name):
continue
# If the operator cannot be initialized with default parameters, skip it.
for key, param in inspect.signature(
op_class.__init__).parameters.items():
if key == 'self':
continue
if param.default is param.empty:
break
else:
filter_ = OP2FILTER.get(op_name, None)
setattr(
cls, attr_name, make_test_func(
op_class, filter_=filter_))
return cls
def make_test_func(op_class,
*args,
in_hook=None,
out_hook=None,
filter_=None,
**kwargs):
def _test_func(self):
op = op_class(*args, **kwargs)
decoder = T.DecodeImg()
inputs = map(decoder, copy.deepcopy(self.inputs))
for i, input_ in enumerate(inputs):
if filter_ is not None:
input_ = filter_(input_)
with self.subTest(i=i):
for sample in input_:
if in_hook:
sample = in_hook(sample)
sample = op(sample)
if out_hook:
sample = out_hook(sample)
return _test_func
class _InputFilter(object):
def __init__(self, conds):
self.conds = conds
def __call__(self, samples):
for sample in samples:
for cond in self.conds:
if cond(sample):
yield sample
def __or__(self, filter):
return _InputFilter(self.conds + filter.conds)
def __and__(self, filter):
return _InputFilter(
[cond for cond in self.conds if cond in filter.conds])
def get_sample(self, input):
return input[0]
def _is_optical(sample):
return sample['image'].shape[2] == 3
def _is_sar(sample):
return sample['image'].shape[2] == 1
def _is_multispectral(sample):
return sample['image'].shape[2] > 3
def _is_mt(sample):
return 'image2' in sample
def _is_seg(sample):
return 'mask' in sample and 'image2' not in sample
def _is_det(sample):
return 'gt_bbox' in sample or 'gt_poly' in sample
def _is_clas(sample):
return 'label' in sample
_filter_only_optical = _InputFilter([_is_optical])
_filter_only_sar = _InputFilter([_is_sar])
_filter_only_multispectral = _InputFilter([_is_multispectral])
_filter_no_multispectral = _filter_only_optical | _filter_only_sar
_filter_no_sar = _filter_only_optical | _filter_only_multispectral
_filter_no_optical = _filter_only_sar | _filter_only_multispectral
_filter_only_mt = _InputFilter([_is_mt])
_filter_no_det = _InputFilter([_is_seg, _is_clas, _is_mt])
OP2FILTER = {
'RandomSwap': _filter_only_mt,
'SelectBand': _filter_no_sar,
'Dehaze': _filter_only_optical,
'Normalize': _filter_only_optical,
'RandomDistort': _filter_only_optical
}
@_add_op_tests
class TestTransform(CpuCommonTest):
def setUp(self):
self.inputs = [
build_input_from_file(
"data/ssst/test_optical_clas.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssst/test_sar_clas.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssst/test_multispectral_clas.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssst/test_optical_seg.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssst/test_sar_seg.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssst/test_multispectral_seg.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssst/test_optical_det.txt",
prefix="./data/ssst",
label_list="data/ssst/labels_det.txt"),
build_input_from_file(
"data/ssst/test_sar_det.txt",
prefix="./data/ssst",
label_list="data/ssst/labels_det.txt"),
build_input_from_file(
"data/ssst/test_multispectral_det.txt",
prefix="./data/ssst",
label_list="data/ssst/labels_det.txt"),
build_input_from_file(
"data/ssst/test_det_coco.txt",
prefix="./data/ssst"),
build_input_from_file(
"data/ssmt/test_mixed_binary.txt",
prefix="./data/ssmt"),
build_input_from_file(
"data/ssmt/test_mixed_multiclass.txt",
prefix="./data/ssmt"),
build_input_from_file(
"data/ssmt/test_mixed_multitask.txt",
prefix="./data/ssmt")
] # yapf: disable
def test_DecodeImg(self):
decoder = T.DecodeImg(to_rgb=True)
for i, input in enumerate(self.inputs):
with self.subTest(i=i):
for sample in input:
sample = decoder(sample)
# Check type
self.assertIsInstance(sample['image'], np.ndarray)
if 'mask' in sample:
self.assertIsInstance(sample['mask'], np.ndarray)
if 'aux_masks' in sample:
for aux_mask in sample['aux_masks']:
self.assertIsInstance(aux_mask, np.ndarray)
# TODO: Check dtype
def test_Resize(self):
TARGET_SIZE = (128, 128)
def _in_hook(sample):
self.image_shape = sample['image'].shape
if 'mask' in sample:
self.mask_shape = sample['mask'].shape
self.mask_values = set(sample['mask'].ravel())
if 'aux_masks' in sample:
self.aux_mask_shapes = [
aux_mask.shape for aux_mask in sample['aux_masks']
]
self.aux_mask_values = [
set(aux_mask.ravel()) for aux_mask in sample['aux_masks']
]
return sample
def _out_hook_not_keep_ratio(sample):
self.check_output_equal(sample['image'].shape[:2], TARGET_SIZE)
if 'image2' in sample:
self.check_output_equal(sample['image2'].shape[:2], TARGET_SIZE)
if 'mask' in sample:
self.check_output_equal(sample['mask'].shape[:2], TARGET_SIZE)
self.assertLessEqual(
set(sample['mask'].ravel()), self.mask_values)
if 'aux_masks' in sample:
for aux_mask in sample['aux_masks']:
self.check_output_equal(aux_mask.shape[:2], TARGET_SIZE)
for aux_mask, amv in zip(sample['aux_masks'],
self.aux_mask_values):
self.assertLessEqual(set(aux_mask.ravel()), amv)
# TODO: Test gt_bbox and gt_poly
return sample
def _out_hook_keep_ratio(sample):
def __check_ratio(shape1, shape2):
self.check_output_equal(shape1[0] / shape1[1],
shape2[0] / shape2[1])
__check_ratio(sample['image'].shape, self.image_shape)
if 'image2' in sample:
__check_ratio(sample['image2'].shape, self.image_shape)
if 'mask' in sample:
__check_ratio(sample['mask'].shape, self.mask_shape)
if 'aux_masks' in sample:
for aux_mask, ori_aux_mask_shape in zip(sample['aux_masks'],
self.aux_mask_shapes):
__check_ratio(aux_mask.shape, ori_aux_mask_shape)
# TODO: Test gt_bbox and gt_poly
return sample
test_func_not_keep_ratio = make_test_func(
T.Resize,
in_hook=_in_hook,
out_hook=_out_hook_not_keep_ratio,
target_size=TARGET_SIZE,
keep_ratio=False)
test_func_not_keep_ratio(self)
test_func_keep_ratio = make_test_func(
T.Resize,
in_hook=_in_hook,
out_hook=_out_hook_keep_ratio,
target_size=TARGET_SIZE,
keep_ratio=True)
test_func_keep_ratio(self)
def test_RandomFlipOrRotate(self):
def _in_hook(sample):
if 'image2' in sample:
self.im_diff = (
sample['image'] - sample['image2']).astype('float64')
elif 'mask' in sample:
self.im_diff = (
sample['image'][..., 0] - sample['mask']).astype('float64')
return sample
def _out_hook(sample):
im_diff = None
if 'image2' in sample:
im_diff = (sample['image'] - sample['image2']).astype('float64')
elif 'mask' in sample:
im_diff = (
sample['image'][..., 0] - sample['mask']).astype('float64')
if im_diff is not None:
self.check_output_equal(im_diff.max(), self.im_diff.max())
self.check_output_equal(im_diff.min(), self.im_diff.min())
return sample
test_func = make_test_func(
T.RandomFlipOrRotate,
in_hook=_in_hook,
out_hook=_out_hook,
filter_=_filter_no_det)
test_func(self)
class TestCompose(CpuCommonTest):
pass
class TestArrange(CpuCommonTest):
pass