You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

351 lines
16 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import tempfile
import unittest.mock as mock
import paddle
import paddlers as pdrs
from paddlers.transforms import decode_image
from testing_utils import CommonTest, run_script
__all__ = [
'TestCDPredictor', 'TestClasPredictor', 'TestDetPredictor',
'TestSegPredictor'
]
class TestPredictor(CommonTest):
MODULE = pdrs.tasks
TRAINER_NAME_TO_EXPORT_OPTS = {}
WHITE_LIST = []
@staticmethod
def add_tests(cls):
"""
Automatically patch testing functions to cls.
"""
def _test_predictor(trainer_name):
def _test_predictor_impl(self):
trainer_class = getattr(self.MODULE, trainer_name)
# Construct trainer with default parameters
# TODO: Load pretrained weights to avoid numeric problems
trainer = trainer_class()
with tempfile.TemporaryDirectory() as td:
dynamic_model_dir = osp.join(td, "dynamic")
static_model_dir = osp.join(td, "static")
# HACK: BaseModel.save_model() requires BaseModel().optimizer to be set
optimizer = mock.Mock()
optimizer.state_dict.return_value = {'foo': 'bar'}
trainer.optimizer = optimizer
trainer.save_model(dynamic_model_dir)
export_cmd = f"python export_model.py --model_dir {dynamic_model_dir} --save_dir {static_model_dir} "
if trainer_name in self.TRAINER_NAME_TO_EXPORT_OPTS:
export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[
trainer_name]
elif '_default' in self.TRAINER_NAME_TO_EXPORT_OPTS:
export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[
'_default']
run_script(export_cmd, wd="../deploy/export")
# Construct predictor
# TODO: Test trt and mkl
predictor = pdrs.deploy.Predictor(
static_model_dir,
use_gpu=paddle.device.get_device().startswith('gpu'))
self.check_predictor(predictor, trainer)
return _test_predictor_impl
for trainer_name in cls.MODULE.__all__:
if trainer_name in cls.WHITE_LIST:
continue
setattr(cls, 'test_' + trainer_name, _test_predictor(trainer_name))
return cls
def check_predictor(self, predictor, trainer):
raise NotImplementedError
def check_dict_equal(
self,
dict_,
expected_dict,
ignore_keys=('label_map', 'mask', 'category', 'category_id')):
# By default do not compare label_maps, masks, or categories,
# because numeric errors could result in large difference in labels.
if isinstance(dict_, list):
self.assertIsInstance(expected_dict, list)
self.assertEqual(len(dict_), len(expected_dict))
for d1, d2 in zip(dict_, expected_dict):
self.check_dict_equal(d1, d2, ignore_keys=ignore_keys)
else:
assert isinstance(dict_, dict)
assert isinstance(expected_dict, dict)
self.assertEqual(dict_.keys(), expected_dict.keys())
ignore_keys = set() if ignore_keys is None else set(ignore_keys)
for key in dict_.keys():
if key in ignore_keys:
continue
# Use higher tolerance
self.check_output_equal(
dict_[key], expected_dict[key], rtol=1.e-4, atol=1.e-6)
@TestPredictor.add_tests
class TestCDPredictor(TestPredictor):
MODULE = pdrs.tasks.change_detector
TRAINER_NAME_TO_EXPORT_OPTS = {
'_default': "--fixed_input_shape [-1,3,256,256]"
}
# HACK: Skip CDNet.
# These models are heavily affected by numeric errors.
WHITE_LIST = ['CDNet']
def check_predictor(self, predictor, trainer):
t1_path = "data/ssmt/optical_t1.bmp"
t2_path = "data/ssmt/optical_t2.bmp"
single_input = (t1_path, t2_path)
num_inputs = 2
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
# Expected failure
with self.assertRaises(ValueError):
predictor.predict(t1_path, transforms=transforms)
# Single input (file paths)
input_ = single_input
out_single_file_p = predictor.predict(input_, transforms=transforms)
out_single_file_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_file_p, out_single_file_t)
out_single_file_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_file_list_p), 1)
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
out_single_file_list_t = trainer.predict(
[input_], transforms=transforms)
self.check_dict_equal(out_single_file_list_p[0],
out_single_file_list_t[0])
# Single input (ndarrays)
input_ = (decode_image(
t1_path, to_rgb=False), decode_image(
t2_path, to_rgb=False)) # Reuse the name `input_`
out_single_array_p = predictor.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_array_p, out_single_file_p)
out_single_array_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_array_p, out_single_array_t)
out_single_array_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_array_list_p), 1)
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
out_single_array_list_t = trainer.predict(
[input_], transforms=transforms)
self.check_dict_equal(out_single_array_list_p[0],
out_single_array_list_t[0])
# Multiple inputs (file paths)
input_ = [single_input] * num_inputs # Reuse the name `input_`
out_multi_file_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_p), num_inputs)
out_multi_file_t = trainer.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_t), num_inputs)
# Multiple inputs (ndarrays)
input_ = [(decode_image(
t1_path, to_rgb=False), decode_image(
t2_path, to_rgb=False))] * num_inputs # Reuse the name `input_`
out_multi_array_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_p), num_inputs)
out_multi_array_t = trainer.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_t), num_inputs)
@TestPredictor.add_tests
class TestClasPredictor(TestPredictor):
MODULE = pdrs.tasks.classifier
TRAINER_NAME_TO_EXPORT_OPTS = {
'_default': "--fixed_input_shape [-1,3,256,256]"
}
def check_predictor(self, predictor, trainer):
single_input = "data/ssmt/optical_t1.bmp"
num_inputs = 2
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
labels = list(range(2))
trainer.labels = labels
predictor._model.labels = labels
# Single input (file path)
input_ = single_input
out_single_file_p = predictor.predict(input_, transforms=transforms)
out_single_file_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_file_p, out_single_file_t)
out_single_file_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_file_list_p), 1)
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
out_single_file_list_t = trainer.predict(
[input_], transforms=transforms)
self.check_dict_equal(out_single_file_list_p[0],
out_single_file_list_t[0])
# Single input (ndarray)
input_ = decode_image(
single_input, to_rgb=False) # Reuse the name `input_`
out_single_array_p = predictor.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_array_p, out_single_file_p)
out_single_array_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_array_p, out_single_array_t)
out_single_array_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_array_list_p), 1)
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
out_single_array_list_t = trainer.predict(
[input_], transforms=transforms)
self.check_dict_equal(out_single_array_list_p[0],
out_single_array_list_t[0])
# Multiple inputs (file paths)
input_ = [single_input] * num_inputs # Reuse the name `input_`
out_multi_file_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_p), num_inputs)
out_multi_file_t = trainer.predict(input_, transforms=transforms)
# Check value consistence
self.check_dict_equal(out_multi_file_p, out_multi_file_t)
# Multiple inputs (ndarrays)
input_ = [decode_image(
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_`
out_multi_array_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_p), num_inputs)
out_multi_array_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_multi_array_p, out_multi_array_t)
@TestPredictor.add_tests
class TestDetPredictor(TestPredictor):
MODULE = pdrs.tasks.object_detector
TRAINER_NAME_TO_EXPORT_OPTS = {
'_default': "--fixed_input_shape [-1,3,256,256]"
}
def check_predictor(self, predictor, trainer):
# For detection tasks, do NOT ensure the consistence of bboxes.
# This is because the coordinates of bboxes were observed to be very sensitive to numeric errors,
# given that the network is (partially?) randomly initialized.
single_input = "data/ssmt/optical_t1.bmp"
num_inputs = 2
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
labels = list(range(80))
trainer.labels = labels
predictor._model.labels = labels
# Single input (file path)
input_ = single_input
predictor.predict(input_, transforms=transforms)
trainer.predict(input_, transforms=transforms)
out_single_file_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_file_list_p), 1)
out_single_file_list_t = trainer.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_file_list_t), 1)
# Single input (ndarray)
input_ = decode_image(
single_input, to_rgb=False) # Reuse the name `input_`
predictor.predict(input_, transforms=transforms)
trainer.predict(input_, transforms=transforms)
out_single_array_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_array_list_p), 1)
out_single_array_list_t = trainer.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_array_list_t), 1)
# Multiple inputs (file paths)
input_ = [single_input] * num_inputs # Reuse the name `input_`
out_multi_file_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_p), num_inputs)
out_multi_file_t = trainer.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_t), num_inputs)
# Multiple inputs (ndarrays)
input_ = [decode_image(
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_`
out_multi_array_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_p), num_inputs)
out_multi_array_t = trainer.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_t), num_inputs)
@TestPredictor.add_tests
class TestSegPredictor(TestPredictor):
MODULE = pdrs.tasks.segmenter
TRAINER_NAME_TO_EXPORT_OPTS = {
'_default': "--fixed_input_shape [-1,3,256,256]"
}
def check_predictor(self, predictor, trainer):
single_input = "data/ssmt/optical_t1.bmp"
num_inputs = 2
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
# Single input (file path)
input_ = single_input
out_single_file_p = predictor.predict(input_, transforms=transforms)
out_single_file_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_file_p, out_single_file_t)
out_single_file_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_file_list_p), 1)
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
out_single_file_list_t = trainer.predict(
[input_], transforms=transforms)
self.check_dict_equal(out_single_file_list_p[0],
out_single_file_list_t[0])
# Single input (ndarray)
input_ = decode_image(
single_input, to_rgb=False) # Reuse the name `input_`
out_single_array_p = predictor.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_array_p, out_single_file_p)
out_single_array_t = trainer.predict(input_, transforms=transforms)
self.check_dict_equal(out_single_array_p, out_single_array_t)
out_single_array_list_p = predictor.predict(
[input_], transforms=transforms)
self.assertEqual(len(out_single_array_list_p), 1)
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
out_single_array_list_t = trainer.predict(
[input_], transforms=transforms)
self.check_dict_equal(out_single_array_list_p[0],
out_single_array_list_t[0])
# Multiple inputs (file paths)
input_ = [single_input] * num_inputs # Reuse the name `input_`
out_multi_file_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_p), num_inputs)
out_multi_file_t = trainer.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_file_t), num_inputs)
# Multiple inputs (ndarrays)
input_ = [decode_image(
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_`
out_multi_array_p = predictor.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_p), num_inputs)
out_multi_array_t = trainer.predict(input_, transforms=transforms)
self.assertEqual(len(out_multi_array_t), num_inputs)