You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
16 KiB
351 lines
16 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os.path as osp |
|
import tempfile |
|
import unittest.mock as mock |
|
|
|
import paddle |
|
|
|
import paddlers as pdrs |
|
from paddlers.transforms import decode_image |
|
from testing_utils import CommonTest, run_script |
|
|
|
__all__ = [ |
|
'TestCDPredictor', 'TestClasPredictor', 'TestDetPredictor', |
|
'TestSegPredictor' |
|
] |
|
|
|
|
|
class TestPredictor(CommonTest): |
|
MODULE = pdrs.tasks |
|
TRAINER_NAME_TO_EXPORT_OPTS = {} |
|
WHITE_LIST = [] |
|
|
|
@staticmethod |
|
def add_tests(cls): |
|
""" |
|
Automatically patch testing functions to cls. |
|
""" |
|
|
|
def _test_predictor(trainer_name): |
|
def _test_predictor_impl(self): |
|
trainer_class = getattr(self.MODULE, trainer_name) |
|
# Construct trainer with default parameters |
|
# TODO: Load pretrained weights to avoid numeric problems |
|
trainer = trainer_class() |
|
with tempfile.TemporaryDirectory() as td: |
|
dynamic_model_dir = osp.join(td, "dynamic") |
|
static_model_dir = osp.join(td, "static") |
|
# HACK: BaseModel.save_model() requires BaseModel().optimizer to be set |
|
optimizer = mock.Mock() |
|
optimizer.state_dict.return_value = {'foo': 'bar'} |
|
trainer.optimizer = optimizer |
|
trainer.save_model(dynamic_model_dir) |
|
export_cmd = f"python export_model.py --model_dir {dynamic_model_dir} --save_dir {static_model_dir} " |
|
if trainer_name in self.TRAINER_NAME_TO_EXPORT_OPTS: |
|
export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[ |
|
trainer_name] |
|
elif '_default' in self.TRAINER_NAME_TO_EXPORT_OPTS: |
|
export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[ |
|
'_default'] |
|
run_script(export_cmd, wd="../deploy/export") |
|
# Construct predictor |
|
# TODO: Test trt and mkl |
|
predictor = pdrs.deploy.Predictor( |
|
static_model_dir, |
|
use_gpu=paddle.device.get_device().startswith('gpu')) |
|
self.check_predictor(predictor, trainer) |
|
|
|
return _test_predictor_impl |
|
|
|
for trainer_name in cls.MODULE.__all__: |
|
if trainer_name in cls.WHITE_LIST: |
|
continue |
|
setattr(cls, 'test_' + trainer_name, _test_predictor(trainer_name)) |
|
|
|
return cls |
|
|
|
def check_predictor(self, predictor, trainer): |
|
raise NotImplementedError |
|
|
|
def check_dict_equal( |
|
self, |
|
dict_, |
|
expected_dict, |
|
ignore_keys=('label_map', 'mask', 'category', 'category_id')): |
|
# By default do not compare label_maps, masks, or categories, |
|
# because numeric errors could result in large difference in labels. |
|
if isinstance(dict_, list): |
|
self.assertIsInstance(expected_dict, list) |
|
self.assertEqual(len(dict_), len(expected_dict)) |
|
for d1, d2 in zip(dict_, expected_dict): |
|
self.check_dict_equal(d1, d2, ignore_keys=ignore_keys) |
|
else: |
|
assert isinstance(dict_, dict) |
|
assert isinstance(expected_dict, dict) |
|
self.assertEqual(dict_.keys(), expected_dict.keys()) |
|
ignore_keys = set() if ignore_keys is None else set(ignore_keys) |
|
for key in dict_.keys(): |
|
if key in ignore_keys: |
|
continue |
|
# Use higher tolerance |
|
self.check_output_equal( |
|
dict_[key], expected_dict[key], rtol=1.e-4, atol=1.e-6) |
|
|
|
|
|
@TestPredictor.add_tests |
|
class TestCDPredictor(TestPredictor): |
|
MODULE = pdrs.tasks.change_detector |
|
TRAINER_NAME_TO_EXPORT_OPTS = { |
|
'_default': "--fixed_input_shape [-1,3,256,256]" |
|
} |
|
# HACK: Skip CDNet. |
|
# These models are heavily affected by numeric errors. |
|
WHITE_LIST = ['CDNet'] |
|
|
|
def check_predictor(self, predictor, trainer): |
|
t1_path = "data/ssmt/optical_t1.bmp" |
|
t2_path = "data/ssmt/optical_t2.bmp" |
|
single_input = (t1_path, t2_path) |
|
num_inputs = 2 |
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()]) |
|
|
|
# Expected failure |
|
with self.assertRaises(ValueError): |
|
predictor.predict(t1_path, transforms=transforms) |
|
|
|
# Single input (file paths) |
|
input_ = single_input |
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_file_p, out_single_file_t) |
|
out_single_file_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_file_list_p), 1) |
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p) |
|
out_single_file_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.check_dict_equal(out_single_file_list_p[0], |
|
out_single_file_list_t[0]) |
|
|
|
# Single input (ndarrays) |
|
input_ = (decode_image( |
|
t1_path, to_rgb=False), decode_image( |
|
t2_path, to_rgb=False)) # Reuse the name `input_` |
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_array_p, out_single_array_t) |
|
out_single_array_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_array_list_p), 1) |
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p) |
|
out_single_array_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.check_dict_equal(out_single_array_list_p[0], |
|
out_single_array_list_t[0]) |
|
|
|
# Multiple inputs (file paths) |
|
input_ = [single_input] * num_inputs # Reuse the name `input_` |
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_t), num_inputs) |
|
|
|
# Multiple inputs (ndarrays) |
|
input_ = [(decode_image( |
|
t1_path, to_rgb=False), decode_image( |
|
t2_path, to_rgb=False))] * num_inputs # Reuse the name `input_` |
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_t), num_inputs) |
|
|
|
|
|
@TestPredictor.add_tests |
|
class TestClasPredictor(TestPredictor): |
|
MODULE = pdrs.tasks.classifier |
|
TRAINER_NAME_TO_EXPORT_OPTS = { |
|
'_default': "--fixed_input_shape [-1,3,256,256]" |
|
} |
|
|
|
def check_predictor(self, predictor, trainer): |
|
single_input = "data/ssmt/optical_t1.bmp" |
|
num_inputs = 2 |
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()]) |
|
labels = list(range(2)) |
|
trainer.labels = labels |
|
predictor._model.labels = labels |
|
|
|
# Single input (file path) |
|
input_ = single_input |
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_file_p, out_single_file_t) |
|
out_single_file_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_file_list_p), 1) |
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p) |
|
out_single_file_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.check_dict_equal(out_single_file_list_p[0], |
|
out_single_file_list_t[0]) |
|
|
|
# Single input (ndarray) |
|
input_ = decode_image( |
|
single_input, to_rgb=False) # Reuse the name `input_` |
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_array_p, out_single_array_t) |
|
out_single_array_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_array_list_p), 1) |
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p) |
|
out_single_array_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.check_dict_equal(out_single_array_list_p[0], |
|
out_single_array_list_t[0]) |
|
|
|
# Multiple inputs (file paths) |
|
input_ = [single_input] * num_inputs # Reuse the name `input_` |
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
# Check value consistence |
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t) |
|
|
|
# Multiple inputs (ndarrays) |
|
input_ = [decode_image( |
|
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_` |
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t) |
|
|
|
|
|
@TestPredictor.add_tests |
|
class TestDetPredictor(TestPredictor): |
|
MODULE = pdrs.tasks.object_detector |
|
TRAINER_NAME_TO_EXPORT_OPTS = { |
|
'_default': "--fixed_input_shape [-1,3,256,256]" |
|
} |
|
|
|
def check_predictor(self, predictor, trainer): |
|
# For detection tasks, do NOT ensure the consistence of bboxes. |
|
# This is because the coordinates of bboxes were observed to be very sensitive to numeric errors, |
|
# given that the network is (partially?) randomly initialized. |
|
single_input = "data/ssmt/optical_t1.bmp" |
|
num_inputs = 2 |
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()]) |
|
labels = list(range(80)) |
|
trainer.labels = labels |
|
predictor._model.labels = labels |
|
|
|
# Single input (file path) |
|
input_ = single_input |
|
predictor.predict(input_, transforms=transforms) |
|
trainer.predict(input_, transforms=transforms) |
|
out_single_file_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_file_list_p), 1) |
|
out_single_file_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_file_list_t), 1) |
|
|
|
# Single input (ndarray) |
|
input_ = decode_image( |
|
single_input, to_rgb=False) # Reuse the name `input_` |
|
predictor.predict(input_, transforms=transforms) |
|
trainer.predict(input_, transforms=transforms) |
|
out_single_array_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_array_list_p), 1) |
|
out_single_array_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_array_list_t), 1) |
|
|
|
# Multiple inputs (file paths) |
|
input_ = [single_input] * num_inputs # Reuse the name `input_` |
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_t), num_inputs) |
|
|
|
# Multiple inputs (ndarrays) |
|
input_ = [decode_image( |
|
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_` |
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_t), num_inputs) |
|
|
|
|
|
@TestPredictor.add_tests |
|
class TestSegPredictor(TestPredictor): |
|
MODULE = pdrs.tasks.segmenter |
|
TRAINER_NAME_TO_EXPORT_OPTS = { |
|
'_default': "--fixed_input_shape [-1,3,256,256]" |
|
} |
|
|
|
def check_predictor(self, predictor, trainer): |
|
single_input = "data/ssmt/optical_t1.bmp" |
|
num_inputs = 2 |
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()]) |
|
|
|
# Single input (file path) |
|
input_ = single_input |
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_file_p, out_single_file_t) |
|
out_single_file_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_file_list_p), 1) |
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p) |
|
out_single_file_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.check_dict_equal(out_single_file_list_p[0], |
|
out_single_file_list_t[0]) |
|
|
|
# Single input (ndarray) |
|
input_ = decode_image( |
|
single_input, to_rgb=False) # Reuse the name `input_` |
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
self.check_dict_equal(out_single_array_p, out_single_array_t) |
|
out_single_array_list_p = predictor.predict( |
|
[input_], transforms=transforms) |
|
self.assertEqual(len(out_single_array_list_p), 1) |
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p) |
|
out_single_array_list_t = trainer.predict( |
|
[input_], transforms=transforms) |
|
self.check_dict_equal(out_single_array_list_p[0], |
|
out_single_array_list_t[0]) |
|
|
|
# Multiple inputs (file paths) |
|
input_ = [single_input] * num_inputs # Reuse the name `input_` |
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_file_t), num_inputs) |
|
|
|
# Multiple inputs (ndarrays) |
|
input_ = [decode_image( |
|
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_` |
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
self.assertEqual(len(out_multi_array_t), num_inputs)
|
|
|