You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
286 lines
11 KiB
286 lines
11 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import traceback |
|
import random |
|
import numpy as np |
|
try: |
|
from collections.abc import Sequence |
|
except Exception: |
|
from collections import Sequence |
|
from paddle.fluid.dataloader.collate import default_collate_fn |
|
from .operators import Transform, Resize, ResizeByShort, _Permute, interp_dict |
|
from .box_utils import jaccard_overlap |
|
from paddlers.utils import logging |
|
|
|
|
|
class BatchCompose(Transform): |
|
def __init__(self, batch_transforms=None, collate_batch=True): |
|
super(BatchCompose, self).__init__() |
|
self.batch_transforms = batch_transforms |
|
self.collate_batch = collate_batch |
|
|
|
def __call__(self, samples): |
|
if self.batch_transforms is not None: |
|
for op in self.batch_transforms: |
|
try: |
|
samples = op(samples) |
|
except Exception as e: |
|
stack_info = traceback.format_exc() |
|
logging.warning("fail to map batch transform [{}] " |
|
"with error: {} and stack:\n{}".format( |
|
op, e, str(stack_info))) |
|
raise e |
|
|
|
samples = _Permute()(samples) |
|
|
|
extra_key = ['h', 'w', 'flipped'] |
|
for k in extra_key: |
|
for sample in samples: |
|
if k in sample: |
|
sample.pop(k) |
|
|
|
if self.collate_batch: |
|
batch_data = default_collate_fn(samples) |
|
else: |
|
batch_data = {} |
|
for k in samples[0].keys(): |
|
tmp_data = [] |
|
for i in range(len(samples)): |
|
tmp_data.append(samples[i][k]) |
|
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k: |
|
tmp_data = np.stack(tmp_data, axis=0) |
|
batch_data[k] = tmp_data |
|
return batch_data |
|
|
|
|
|
class BatchRandomResize(Transform): |
|
""" |
|
Resize a batch of input to random sizes. |
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. |
|
|
|
Args: |
|
target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]): |
|
Multiple target sizes, each target size is an int or list/tuple of length 2. |
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): |
|
Interpolation method of resize. Defaults to 'LINEAR'. |
|
Raises: |
|
TypeError: Invalid type of target_size. |
|
ValueError: Invalid interpolation method. |
|
|
|
See Also: |
|
RandomResize: Resize input to random sizes. |
|
""" |
|
|
|
def __init__(self, target_sizes, interp='NEAREST'): |
|
super(BatchRandomResize, self).__init__() |
|
if not (interp == "RANDOM" or interp in interp_dict): |
|
raise ValueError("interp should be one of {}".format( |
|
interp_dict.keys())) |
|
self.interp = interp |
|
assert isinstance(target_sizes, list), \ |
|
"target_size must be List" |
|
for i, item in enumerate(target_sizes): |
|
if isinstance(item, int): |
|
target_sizes[i] = (item, item) |
|
self.target_size = target_sizes |
|
|
|
def __call__(self, samples): |
|
height, width = random.choice(self.target_size) |
|
resizer = Resize((height, width), interp=self.interp) |
|
samples = resizer(samples) |
|
|
|
return samples |
|
|
|
|
|
class BatchRandomResizeByShort(Transform): |
|
"""Resize a batch of input to random sizes with keeping the aspect ratio. |
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. |
|
|
|
Args: |
|
short_sizes (List[int], Tuple[int]): Target sizes of the shorter side of the image(s). |
|
max_size (int, optional): The upper bound of longer side of the image(s). |
|
If max_size is -1, no upper bound is applied. Defaults to -1. |
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): |
|
Interpolation method of resize. Defaults to 'LINEAR'. |
|
|
|
Raises: |
|
TypeError: Invalid type of target_size. |
|
ValueError: Invalid interpolation method. |
|
|
|
See Also: |
|
RandomResizeByShort: Resize input to random sizes with keeping the aspect ratio. |
|
""" |
|
|
|
def __init__(self, short_sizes, max_size=-1, interp='NEAREST'): |
|
super(BatchRandomResizeByShort, self).__init__() |
|
if not (interp == "RANDOM" or interp in interp_dict): |
|
raise ValueError("interp should be one of {}".format( |
|
interp_dict.keys())) |
|
self.interp = interp |
|
assert isinstance(short_sizes, list), \ |
|
"short_sizes must be List" |
|
|
|
self.short_sizes = short_sizes |
|
self.max_size = max_size |
|
|
|
def __call__(self, samples): |
|
short_size = random.choice(self.short_sizes) |
|
resizer = ResizeByShort( |
|
short_size=short_size, max_size=self.max_size, interp=self.interp) |
|
|
|
samples = resizer(samples) |
|
|
|
return samples |
|
|
|
|
|
class _BatchPadding(Transform): |
|
def __init__(self, pad_to_stride=0): |
|
super(_BatchPadding, self).__init__() |
|
self.pad_to_stride = pad_to_stride |
|
|
|
def __call__(self, samples): |
|
coarsest_stride = self.pad_to_stride |
|
max_shape = np.array([data['image'].shape for data in samples]).max( |
|
axis=0) |
|
if coarsest_stride > 0: |
|
max_shape[0] = int( |
|
np.ceil(max_shape[0] / coarsest_stride) * coarsest_stride) |
|
max_shape[1] = int( |
|
np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride) |
|
for data in samples: |
|
im = data['image'] |
|
im_h, im_w, im_c = im.shape[:] |
|
padding_im = np.zeros( |
|
(max_shape[0], max_shape[1], im_c), dtype=np.float32) |
|
padding_im[:im_h, :im_w, :] = im |
|
data['image'] = padding_im |
|
|
|
return samples |
|
|
|
|
|
class _Gt2YoloTarget(Transform): |
|
""" |
|
Generate YOLOv3 targets by groud truth data, this operator is only used in |
|
fine grained YOLOv3 loss mode |
|
""" |
|
|
|
def __init__(self, |
|
anchors, |
|
anchor_masks, |
|
downsample_ratios, |
|
num_classes=80, |
|
iou_thresh=1.): |
|
super(_Gt2YoloTarget, self).__init__() |
|
self.anchors = anchors |
|
self.anchor_masks = anchor_masks |
|
self.downsample_ratios = downsample_ratios |
|
self.num_classes = num_classes |
|
self.iou_thresh = iou_thresh |
|
|
|
def __call__(self, samples, context=None): |
|
assert len(self.anchor_masks) == len(self.downsample_ratios), \ |
|
"anchor_masks', and 'downsample_ratios' should have same length." |
|
|
|
h, w = samples[0]['image'].shape[:2] |
|
an_hw = np.array(self.anchors) / np.array([[w, h]]) |
|
for sample in samples: |
|
gt_bbox = sample['gt_bbox'] |
|
gt_class = sample['gt_class'] |
|
if 'gt_score' not in sample: |
|
sample['gt_score'] = np.ones( |
|
(gt_bbox.shape[0], 1), dtype=np.float32) |
|
gt_score = sample['gt_score'] |
|
for i, ( |
|
mask, downsample_ratio |
|
) in enumerate(zip(self.anchor_masks, self.downsample_ratios)): |
|
grid_h = int(h / downsample_ratio) |
|
grid_w = int(w / downsample_ratio) |
|
target = np.zeros( |
|
(len(mask), 6 + self.num_classes, grid_h, grid_w), |
|
dtype=np.float32) |
|
for b in range(gt_bbox.shape[0]): |
|
gx, gy, gw, gh = gt_bbox[b, :] |
|
cls = gt_class[b] |
|
score = gt_score[b] |
|
if gw <= 0. or gh <= 0. or score <= 0.: |
|
continue |
|
|
|
# find best match anchor index |
|
best_iou = 0. |
|
best_idx = -1 |
|
for an_idx in range(an_hw.shape[0]): |
|
iou = jaccard_overlap( |
|
[0., 0., gw, gh], |
|
[0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]]) |
|
if iou > best_iou: |
|
best_iou = iou |
|
best_idx = an_idx |
|
|
|
gi = int(gx * grid_w) |
|
gj = int(gy * grid_h) |
|
|
|
# gtbox should be regresed in this layes if best match |
|
# anchor index in anchor mask of this layer |
|
if best_idx in mask: |
|
best_n = mask.index(best_idx) |
|
|
|
# x, y, w, h, scale |
|
target[best_n, 0, gj, gi] = gx * grid_w - gi |
|
target[best_n, 1, gj, gi] = gy * grid_h - gj |
|
target[best_n, 2, gj, gi] = np.log( |
|
gw * w / self.anchors[best_idx][0]) |
|
target[best_n, 3, gj, gi] = np.log( |
|
gh * h / self.anchors[best_idx][1]) |
|
target[best_n, 4, gj, gi] = 2.0 - gw * gh |
|
|
|
# objectness record gt_score |
|
target[best_n, 5, gj, gi] = score |
|
|
|
# classification |
|
target[best_n, 6 + cls, gj, gi] = 1. |
|
|
|
# For non-matched anchors, calculate the target if the iou |
|
# between anchor and gt is larger than iou_thresh |
|
if self.iou_thresh < 1: |
|
for idx, mask_i in enumerate(mask): |
|
if mask_i == best_idx: continue |
|
iou = jaccard_overlap( |
|
[0., 0., gw, gh], |
|
[0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]]) |
|
if iou > self.iou_thresh and target[idx, 5, gj, |
|
gi] == 0.: |
|
# x, y, w, h, scale |
|
target[idx, 0, gj, gi] = gx * grid_w - gi |
|
target[idx, 1, gj, gi] = gy * grid_h - gj |
|
target[idx, 2, gj, gi] = np.log( |
|
gw * w / self.anchors[mask_i][0]) |
|
target[idx, 3, gj, gi] = np.log( |
|
gh * h / self.anchors[mask_i][1]) |
|
target[idx, 4, gj, gi] = 2.0 - gw * gh |
|
|
|
# objectness record gt_score |
|
target[idx, 5, gj, gi] = score |
|
|
|
# classification |
|
target[idx, 5 + cls, gj, gi] = 1. |
|
sample['target{}'.format(i)] = target |
|
|
|
# remove useless gt_class and gt_score after target calculated |
|
sample.pop('gt_class') |
|
sample.pop('gt_score') |
|
|
|
return samples
|
|
|