You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.2 KiB
92 lines
3.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import math |
|
|
|
|
|
class _SpectralNorm(nn.SpectralNorm): |
|
def __init__(self, |
|
weight_shape, |
|
dim=0, |
|
power_iters=1, |
|
eps=1e-12, |
|
dtype='float32'): |
|
super(_SpectralNorm, self).__init__(weight_shape, dim, power_iters, eps, |
|
dtype) |
|
|
|
def forward(self, weight): |
|
inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v} |
|
out = self._helper.create_variable_for_type_inference(self._dtype) |
|
_power_iters = self._power_iters if self.training else 0 |
|
self._helper.append_op(type="spectral_norm", |
|
inputs=inputs, |
|
outputs={ |
|
"Out": out, |
|
}, |
|
attrs={ |
|
"dim": self._dim, |
|
"power_iters": _power_iters, |
|
"eps": self._eps, |
|
}) |
|
|
|
return out |
|
|
|
|
|
class Spectralnorm(paddle.nn.Layer): |
|
def __init__(self, layer, dim=0, power_iters=1, eps=1e-12, dtype='float32'): |
|
super(Spectralnorm, self).__init__() |
|
self.spectral_norm = _SpectralNorm(layer.weight.shape, dim, power_iters, |
|
eps, dtype) |
|
self.dim = dim |
|
self.power_iters = power_iters |
|
self.eps = eps |
|
self.layer = layer |
|
weight = layer._parameters['weight'] |
|
del layer._parameters['weight'] |
|
self.weight_orig = self.create_parameter(weight.shape, |
|
dtype=weight.dtype) |
|
self.weight_orig.set_value(weight) |
|
|
|
def forward(self, x): |
|
weight = self.spectral_norm(self.weight_orig) |
|
self.layer.weight = weight |
|
out = self.layer(x) |
|
return out |
|
|
|
|
|
class RhoClipper(object): |
|
def __init__(self, min, max): |
|
self.clip_min = min |
|
self.clip_max = max |
|
assert min < max |
|
|
|
def __call__(self, module): |
|
|
|
if hasattr(module, 'rho'): |
|
w = module.rho |
|
w = w.clip(self.clip_min, self.clip_max) |
|
module.rho.set_value(w) |
|
|
|
# used for photo2cartoon training |
|
if hasattr(module, 'w_gamma'): |
|
w = module.w_gamma |
|
w = w.clip(self.clip_min, self.clip_max) |
|
module.w_gamma.set_value(w) |
|
|
|
if hasattr(module, 'w_beta'): |
|
w = module.w_beta |
|
w = w.clip(self.clip_min, self.clip_max) |
|
module.w_beta.set_value(w)
|
|
|