You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
16 KiB
479 lines
16 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
from paddle.regularizer import L2Decay |
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
from numbers import Integral |
|
from ..shape_spec import ShapeSpec |
|
|
|
__all__ = ['MobileNetV3'] |
|
|
|
|
|
def make_divisible(v, divisor=8, min_value=None): |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_c, |
|
out_c, |
|
filter_size, |
|
stride, |
|
padding, |
|
num_groups=1, |
|
act=None, |
|
lr_mult=1., |
|
conv_decay=0., |
|
norm_type='bn', |
|
norm_decay=0., |
|
freeze_norm=False, |
|
name=""): |
|
super(ConvBNLayer, self).__init__() |
|
self.act = act |
|
self.conv = nn.Conv2D( |
|
in_channels=in_c, |
|
out_channels=out_c, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=num_groups, |
|
weight_attr=ParamAttr( |
|
learning_rate=lr_mult, regularizer=L2Decay(conv_decay)), |
|
bias_attr=False) |
|
|
|
norm_lr = 0. if freeze_norm else lr_mult |
|
param_attr = ParamAttr( |
|
learning_rate=norm_lr, |
|
regularizer=L2Decay(norm_decay), |
|
trainable=False if freeze_norm else True) |
|
bias_attr = ParamAttr( |
|
learning_rate=norm_lr, |
|
regularizer=L2Decay(norm_decay), |
|
trainable=False if freeze_norm else True) |
|
global_stats = True if freeze_norm else None |
|
if norm_type in ['sync_bn', 'bn']: |
|
self.bn = nn.BatchNorm2D( |
|
out_c, |
|
weight_attr=param_attr, |
|
bias_attr=bias_attr, |
|
use_global_stats=global_stats) |
|
norm_params = self.bn.parameters() |
|
if freeze_norm: |
|
for param in norm_params: |
|
param.stop_gradient = True |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
if self.act is not None: |
|
if self.act == "relu": |
|
x = F.relu(x) |
|
elif self.act == "relu6": |
|
x = F.relu6(x) |
|
elif self.act == "hard_swish": |
|
x = F.hardswish(x) |
|
else: |
|
raise NotImplementedError( |
|
"The activation function is selected incorrectly.") |
|
return x |
|
|
|
|
|
class ResidualUnit(nn.Layer): |
|
def __init__(self, |
|
in_c, |
|
mid_c, |
|
out_c, |
|
filter_size, |
|
stride, |
|
use_se, |
|
lr_mult, |
|
conv_decay=0., |
|
norm_type='bn', |
|
norm_decay=0., |
|
freeze_norm=False, |
|
act=None, |
|
return_list=False, |
|
name=''): |
|
super(ResidualUnit, self).__init__() |
|
self.if_shortcut = stride == 1 and in_c == out_c |
|
self.use_se = use_se |
|
self.return_list = return_list |
|
|
|
self.expand_conv = ConvBNLayer( |
|
in_c=in_c, |
|
out_c=mid_c, |
|
filter_size=1, |
|
stride=1, |
|
padding=0, |
|
act=act, |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + "_expand") |
|
self.bottleneck_conv = ConvBNLayer( |
|
in_c=mid_c, |
|
out_c=mid_c, |
|
filter_size=filter_size, |
|
stride=stride, |
|
padding=int((filter_size - 1) // 2), |
|
num_groups=mid_c, |
|
act=act, |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + "_depthwise") |
|
if self.use_se: |
|
self.mid_se = SEModule( |
|
mid_c, lr_mult, conv_decay, name=name + "_se") |
|
self.linear_conv = ConvBNLayer( |
|
in_c=mid_c, |
|
out_c=out_c, |
|
filter_size=1, |
|
stride=1, |
|
padding=0, |
|
act=None, |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + "_linear") |
|
|
|
def forward(self, inputs): |
|
y = self.expand_conv(inputs) |
|
x = self.bottleneck_conv(y) |
|
if self.use_se: |
|
x = self.mid_se(x) |
|
x = self.linear_conv(x) |
|
if self.if_shortcut: |
|
x = paddle.add(inputs, x) |
|
if self.return_list: |
|
return [y, x] |
|
else: |
|
return x |
|
|
|
|
|
class SEModule(nn.Layer): |
|
def __init__(self, channel, lr_mult, conv_decay, reduction=4, name=""): |
|
super(SEModule, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
|
mid_channels = int(channel // reduction) |
|
self.conv1 = nn.Conv2D( |
|
in_channels=channel, |
|
out_channels=mid_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
weight_attr=ParamAttr( |
|
learning_rate=lr_mult, regularizer=L2Decay(conv_decay)), |
|
bias_attr=ParamAttr( |
|
learning_rate=lr_mult, regularizer=L2Decay(conv_decay))) |
|
self.conv2 = nn.Conv2D( |
|
in_channels=mid_channels, |
|
out_channels=channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
weight_attr=ParamAttr( |
|
learning_rate=lr_mult, regularizer=L2Decay(conv_decay)), |
|
bias_attr=ParamAttr( |
|
learning_rate=lr_mult, regularizer=L2Decay(conv_decay))) |
|
|
|
def forward(self, inputs): |
|
outputs = self.avg_pool(inputs) |
|
outputs = self.conv1(outputs) |
|
outputs = F.relu(outputs) |
|
outputs = self.conv2(outputs) |
|
outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5) |
|
return paddle.multiply(x=inputs, y=outputs) |
|
|
|
|
|
class ExtraBlockDW(nn.Layer): |
|
def __init__(self, |
|
in_c, |
|
ch_1, |
|
ch_2, |
|
stride, |
|
lr_mult, |
|
conv_decay=0., |
|
norm_type='bn', |
|
norm_decay=0., |
|
freeze_norm=False, |
|
name=None): |
|
super(ExtraBlockDW, self).__init__() |
|
self.pointwise_conv = ConvBNLayer( |
|
in_c=in_c, |
|
out_c=ch_1, |
|
filter_size=1, |
|
stride=1, |
|
padding='SAME', |
|
act='relu6', |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + "_extra1") |
|
self.depthwise_conv = ConvBNLayer( |
|
in_c=ch_1, |
|
out_c=ch_2, |
|
filter_size=3, |
|
stride=stride, |
|
padding='SAME', |
|
num_groups=int(ch_1), |
|
act='relu6', |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + "_extra2_dw") |
|
self.normal_conv = ConvBNLayer( |
|
in_c=ch_2, |
|
out_c=ch_2, |
|
filter_size=1, |
|
stride=1, |
|
padding='SAME', |
|
act='relu6', |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name=name + "_extra2_sep") |
|
|
|
def forward(self, inputs): |
|
x = self.pointwise_conv(inputs) |
|
x = self.depthwise_conv(x) |
|
x = self.normal_conv(x) |
|
return x |
|
|
|
|
|
@register |
|
@serializable |
|
class MobileNetV3(nn.Layer): |
|
__shared__ = ['norm_type'] |
|
|
|
def __init__(self, |
|
scale=1.0, |
|
model_name="large", |
|
feature_maps=[6, 12, 15], |
|
with_extra_blocks=False, |
|
extra_block_filters=[[256, 512], [128, 256], [128, 256], |
|
[64, 128]], |
|
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], |
|
conv_decay=0.0, |
|
multiplier=1.0, |
|
norm_type='bn', |
|
norm_decay=0.0, |
|
freeze_norm=False): |
|
super(MobileNetV3, self).__init__() |
|
if isinstance(feature_maps, Integral): |
|
feature_maps = [feature_maps] |
|
if norm_type == 'sync_bn' and freeze_norm: |
|
raise ValueError( |
|
"The norm_type should not be sync_bn when freeze_norm is True") |
|
self.feature_maps = feature_maps |
|
self.with_extra_blocks = with_extra_blocks |
|
self.extra_block_filters = extra_block_filters |
|
|
|
inplanes = 16 |
|
if model_name == "large": |
|
self.cfg = [ |
|
# k, exp, c, se, nl, s, |
|
[3, 16, 16, False, "relu", 1], |
|
[3, 64, 24, False, "relu", 2], |
|
[3, 72, 24, False, "relu", 1], |
|
[5, 72, 40, True, "relu", 2], # RCNN output |
|
[5, 120, 40, True, "relu", 1], |
|
[5, 120, 40, True, "relu", 1], # YOLOv3 output |
|
[3, 240, 80, False, "hard_swish", 2], # RCNN output |
|
[3, 200, 80, False, "hard_swish", 1], |
|
[3, 184, 80, False, "hard_swish", 1], |
|
[3, 184, 80, False, "hard_swish", 1], |
|
[3, 480, 112, True, "hard_swish", 1], |
|
[3, 672, 112, True, "hard_swish", 1], # YOLOv3 output |
|
[5, 672, 160, True, "hard_swish", |
|
2], # SSD/SSDLite/RCNN output |
|
[5, 960, 160, True, "hard_swish", 1], |
|
[5, 960, 160, True, "hard_swish", 1], # YOLOv3 output |
|
] |
|
elif model_name == "small": |
|
self.cfg = [ |
|
# k, exp, c, se, nl, s, |
|
[3, 16, 16, True, "relu", 2], |
|
[3, 72, 24, False, "relu", 2], # RCNN output |
|
[3, 88, 24, False, "relu", 1], # YOLOv3 output |
|
[5, 96, 40, True, "hard_swish", 2], # RCNN output |
|
[5, 240, 40, True, "hard_swish", 1], |
|
[5, 240, 40, True, "hard_swish", 1], |
|
[5, 120, 48, True, "hard_swish", 1], |
|
[5, 144, 48, True, "hard_swish", 1], # YOLOv3 output |
|
[5, 288, 96, True, "hard_swish", 2], # SSD/SSDLite/RCNN output |
|
[5, 576, 96, True, "hard_swish", 1], |
|
[5, 576, 96, True, "hard_swish", 1], # YOLOv3 output |
|
] |
|
else: |
|
raise NotImplementedError( |
|
"mode[{}_model] is not implemented!".format(model_name)) |
|
|
|
if multiplier != 1.0: |
|
self.cfg[-3][2] = int(self.cfg[-3][2] * multiplier) |
|
self.cfg[-2][1] = int(self.cfg[-2][1] * multiplier) |
|
self.cfg[-2][2] = int(self.cfg[-2][2] * multiplier) |
|
self.cfg[-1][1] = int(self.cfg[-1][1] * multiplier) |
|
self.cfg[-1][2] = int(self.cfg[-1][2] * multiplier) |
|
|
|
self.conv1 = ConvBNLayer( |
|
in_c=3, |
|
out_c=make_divisible(inplanes * scale), |
|
filter_size=3, |
|
stride=2, |
|
padding=1, |
|
num_groups=1, |
|
act="hard_swish", |
|
lr_mult=lr_mult_list[0], |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="conv1") |
|
|
|
self._out_channels = [] |
|
self.block_list = [] |
|
i = 0 |
|
inplanes = make_divisible(inplanes * scale) |
|
for (k, exp, c, se, nl, s) in self.cfg: |
|
lr_idx = min(i // 3, len(lr_mult_list) - 1) |
|
lr_mult = lr_mult_list[lr_idx] |
|
|
|
# for SSD/SSDLite, first head input is after ResidualUnit expand_conv |
|
return_list = self.with_extra_blocks and i + 2 in self.feature_maps |
|
|
|
block = self.add_sublayer( |
|
"conv" + str(i + 2), |
|
sublayer=ResidualUnit( |
|
in_c=inplanes, |
|
mid_c=make_divisible(scale * exp), |
|
out_c=make_divisible(scale * c), |
|
filter_size=k, |
|
stride=s, |
|
use_se=se, |
|
act=nl, |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
return_list=return_list, |
|
name="conv" + str(i + 2))) |
|
self.block_list.append(block) |
|
inplanes = make_divisible(scale * c) |
|
i += 1 |
|
self._update_out_channels( |
|
make_divisible(scale * exp) |
|
if return_list else inplanes, i + 1, feature_maps) |
|
|
|
if self.with_extra_blocks: |
|
self.extra_block_list = [] |
|
extra_out_c = make_divisible(scale * self.cfg[-1][1]) |
|
lr_idx = min(i // 3, len(lr_mult_list) - 1) |
|
lr_mult = lr_mult_list[lr_idx] |
|
|
|
conv_extra = self.add_sublayer( |
|
"conv" + str(i + 2), |
|
sublayer=ConvBNLayer( |
|
in_c=inplanes, |
|
out_c=extra_out_c, |
|
filter_size=1, |
|
stride=1, |
|
padding=0, |
|
num_groups=1, |
|
act="hard_swish", |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name="conv" + str(i + 2))) |
|
self.extra_block_list.append(conv_extra) |
|
i += 1 |
|
self._update_out_channels(extra_out_c, i + 1, feature_maps) |
|
|
|
for j, block_filter in enumerate(self.extra_block_filters): |
|
in_c = extra_out_c if j == 0 else self.extra_block_filters[ |
|
j - 1][1] |
|
conv_extra = self.add_sublayer( |
|
"conv" + str(i + 2), |
|
sublayer=ExtraBlockDW( |
|
in_c, |
|
block_filter[0], |
|
block_filter[1], |
|
stride=2, |
|
lr_mult=lr_mult, |
|
conv_decay=conv_decay, |
|
norm_type=norm_type, |
|
norm_decay=norm_decay, |
|
freeze_norm=freeze_norm, |
|
name='conv' + str(i + 2))) |
|
self.extra_block_list.append(conv_extra) |
|
i += 1 |
|
self._update_out_channels(block_filter[1], i + 1, feature_maps) |
|
|
|
def _update_out_channels(self, channel, feature_idx, feature_maps): |
|
if feature_idx in feature_maps: |
|
self._out_channels.append(channel) |
|
|
|
def forward(self, inputs): |
|
x = self.conv1(inputs['image']) |
|
outs = [] |
|
for idx, block in enumerate(self.block_list): |
|
x = block(x) |
|
if idx + 2 in self.feature_maps: |
|
if isinstance(x, list): |
|
outs.append(x[0]) |
|
x = x[1] |
|
else: |
|
outs.append(x) |
|
|
|
if not self.with_extra_blocks: |
|
return outs |
|
|
|
for i, block in enumerate(self.extra_block_list): |
|
idx = i + len(self.block_list) |
|
x = block(x) |
|
if idx + 2 in self.feature_maps: |
|
outs.append(x) |
|
return outs |
|
|
|
@property |
|
def out_shape(self): |
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|
|
|