You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

55 lines
1.6 KiB

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlers as pdrs
from paddlers import transforms as T
# 下载和解压多光谱地块分类数据集
dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
pdrs.utils.download_and_decompress(dataset, path='./data')
# 定义训练和验证时的transforms
channel = 10
train_transforms = T.Compose([
T.Resize(target_size=512),
T.RandomHorizontalFlip(),
T.Normalize(
mean=[0.5] * channel, std=[0.5] * channel),
])
eval_transforms = T.Compose([
T.Resize(target_size=512),
T.Normalize(
mean=[0.5] * channel, std=[0.5] * channel),
])
# 定义训练和验证所用的数据集
train_dataset = pdrs.datasets.SegDataset(
data_dir='./data/remote_sensing_seg',
file_list='./data/remote_sensing_seg/train.txt',
label_list='./data/remote_sensing_seg/labels.txt',
transforms=train_transforms,
num_workers=0,
shuffle=True)
eval_dataset = pdrs.datasets.SegDataset(
data_dir='./data/remote_sensing_seg',
file_list='./data/remote_sensing_seg/val.txt',
label_list='./data/remote_sensing_seg/labels.txt',
transforms=eval_transforms,
num_workers=0,
shuffle=False)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
num_classes = len(train_dataset.labels)
model = pdrs.tasks.UNet(input_channel=channel, num_classes=num_classes)
model.train(
num_epochs=20,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
learning_rate=0.01,
save_dir='output/unet',
use_vdl=True)