You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
58 lines
2.0 KiB
58 lines
2.0 KiB
import os |
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
|
|
import paddlers as pdrs |
|
from paddlers import transforms as T |
|
|
|
# 下载和解压视盘分割数据集 |
|
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz' |
|
pdrs.utils.download_and_decompress(optic_dataset, path='./') |
|
|
|
# 定义训练和验证时的transforms |
|
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/transforms/transforms.md |
|
train_transforms = T.Compose([ |
|
T.Resize(target_size=512), |
|
T.RandomHorizontalFlip(), |
|
T.Normalize( |
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
eval_transforms = T.Compose([ |
|
T.Resize(target_size=512), |
|
T.Normalize( |
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
# 定义训练和验证所用的数据集 |
|
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/datasets.md |
|
train_dataset = pdrs.datasets.SegDataset( |
|
data_dir='optic_disc_seg', |
|
file_list='optic_disc_seg/train_list.txt', |
|
label_list='optic_disc_seg/labels.txt', |
|
transforms=train_transforms, |
|
num_workers=0, |
|
shuffle=True) |
|
|
|
eval_dataset = pdrs.datasets.SegDataset( |
|
data_dir='optic_disc_seg', |
|
file_list='optic_disc_seg/val_list.txt', |
|
label_list='optic_disc_seg/labels.txt', |
|
transforms=eval_transforms, |
|
num_workers=0, |
|
shuffle=False) |
|
|
|
# 初始化模型,并进行训练 |
|
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/paddlers/blob/develop/docs/visualdl.md |
|
num_classes = len(train_dataset.labels) |
|
model = pdrs.tasks.FarSeg(num_classes=num_classes) |
|
|
|
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/models/semantic_segmentation.md |
|
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/parameters.md |
|
model.train( |
|
num_epochs=10, |
|
train_dataset=train_dataset, |
|
train_batch_size=4, |
|
eval_dataset=eval_dataset, |
|
learning_rate=0.01, |
|
pretrain_weights=None, |
|
save_dir='output/farseg')
|
|
|