You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1849 lines
67 KiB
1849 lines
67 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import copy |
|
import random |
|
from numbers import Number |
|
from functools import partial |
|
from operator import methodcaller |
|
try: |
|
from collections.abc import Sequence |
|
except Exception: |
|
from collections import Sequence |
|
|
|
import numpy as np |
|
import cv2 |
|
import imghdr |
|
from PIL import Image |
|
from joblib import load |
|
|
|
import paddlers |
|
from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \ |
|
horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \ |
|
crop_rle, expand_poly, expand_rle, resize_poly, resize_rle, dehaze, select_bands, \ |
|
to_intensity, to_uint8, img_flip, img_simple_rotate |
|
|
|
__all__ = [ |
|
"Compose", |
|
"DecodeImg", |
|
"Resize", |
|
"RandomResize", |
|
"ResizeByShort", |
|
"RandomResizeByShort", |
|
"ResizeByLong", |
|
"RandomHorizontalFlip", |
|
"RandomVerticalFlip", |
|
"Normalize", |
|
"CenterCrop", |
|
"RandomCrop", |
|
"RandomScaleAspect", |
|
"RandomExpand", |
|
"Pad", |
|
"MixupImage", |
|
"RandomDistort", |
|
"RandomBlur", |
|
"RandomSwap", |
|
"Dehaze", |
|
"ReduceDim", |
|
"SelectBand", |
|
"ArrangeSegmenter", |
|
"ArrangeChangeDetector", |
|
"ArrangeClassifier", |
|
"ArrangeDetector", |
|
"RandomFlipOrRotate", |
|
] |
|
|
|
interp_dict = { |
|
'NEAREST': cv2.INTER_NEAREST, |
|
'LINEAR': cv2.INTER_LINEAR, |
|
'CUBIC': cv2.INTER_CUBIC, |
|
'AREA': cv2.INTER_AREA, |
|
'LANCZOS4': cv2.INTER_LANCZOS4 |
|
} |
|
|
|
|
|
class Transform(object): |
|
""" |
|
Parent class of all data augmentation operations |
|
""" |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def apply_im(self, image): |
|
pass |
|
|
|
def apply_mask(self, mask): |
|
pass |
|
|
|
def apply_bbox(self, bbox): |
|
pass |
|
|
|
def apply_segm(self, segms): |
|
pass |
|
|
|
def apply(self, sample): |
|
if 'image' in sample: |
|
sample['image'] = self.apply_im(sample['image']) |
|
else: # image_tx |
|
sample['image'] = self.apply_im(sample['image_t1']) |
|
sample['image2'] = self.apply_im(sample['image_t2']) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask']) |
|
if 'gt_bbox' in sample: |
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox']) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(self.apply_mask, sample['aux_masks'])) |
|
|
|
return sample |
|
|
|
def __call__(self, sample): |
|
if isinstance(sample, Sequence): |
|
sample = [self.apply(s) for s in sample] |
|
else: |
|
sample = self.apply(sample) |
|
|
|
return sample |
|
|
|
|
|
class DecodeImg(Transform): |
|
""" |
|
Decode image(s) in input. |
|
|
|
Args: |
|
to_rgb (bool, optional): If True, convert input image(s) from BGR format to RGB format. Defaults to True. |
|
to_uint8 (bool, optional): If True, quantize and convert decoded image(s) to uint8 type. Defaults to True. |
|
decode_bgr (bool, optional): If True, automatically interpret a non-geo image (e.g., jpeg images) as a BGR image. |
|
Defaults to True. |
|
decode_sar (bool, optional): If True, automatically interpret a two-channel geo image (e.g. geotiff images) as a |
|
SAR image, set this argument to True. Defaults to True. |
|
""" |
|
|
|
def __init__(self, |
|
to_rgb=True, |
|
to_uint8=True, |
|
decode_bgr=True, |
|
decode_sar=True): |
|
super(DecodeImg, self).__init__() |
|
self.to_rgb = to_rgb |
|
self.to_uint8 = to_uint8 |
|
self.decode_bgr = decode_bgr |
|
self.decode_sar = decode_sar |
|
|
|
def read_img(self, img_path): |
|
img_format = imghdr.what(img_path) |
|
name, ext = os.path.splitext(img_path) |
|
if img_format == 'tiff' or ext == '.img': |
|
try: |
|
import gdal |
|
except: |
|
try: |
|
from osgeo import gdal |
|
except ImportError: |
|
raise ImportError( |
|
"Failed to import gdal! Please install GDAL library according to the document." |
|
) |
|
|
|
dataset = gdal.Open(img_path) |
|
if dataset == None: |
|
raise IOError('Can not open', img_path) |
|
im_data = dataset.ReadAsArray() |
|
if im_data.ndim == 2 and self.decode_sar: |
|
im_data = to_intensity(im_data) # is read SAR |
|
im_data = im_data[:, :, np.newaxis] |
|
else: |
|
if im_data.ndim == 3: |
|
im_data = im_data.transpose((1, 2, 0)) |
|
return im_data |
|
elif img_format in ['jpeg', 'bmp', 'png', 'jpg']: |
|
if self.decode_bgr: |
|
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | |
|
cv2.IMREAD_ANYCOLOR | cv2.IMREAD_COLOR) |
|
else: |
|
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | |
|
cv2.IMREAD_ANYCOLOR) |
|
elif ext == '.npy': |
|
return np.load(img_path) |
|
else: |
|
raise TypeError('Image format {} is not supported!'.format(ext)) |
|
|
|
def apply_im(self, im_path): |
|
if isinstance(im_path, str): |
|
try: |
|
image = self.read_img(im_path) |
|
except: |
|
raise ValueError('Cannot read the image file {}!'.format( |
|
im_path)) |
|
else: |
|
image = im_path |
|
|
|
if self.to_rgb and image.shape[-1] == 3: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
if self.to_uint8: |
|
image = to_uint8(image) |
|
|
|
return image |
|
|
|
def apply_mask(self, mask): |
|
try: |
|
mask = np.asarray(Image.open(mask)) |
|
except: |
|
raise ValueError("Cannot read the mask file {}!".format(mask)) |
|
if len(mask.shape) != 2: |
|
raise ValueError( |
|
"Mask should be a 1-channel image, but recevied is a {}-channel image.". |
|
format(mask.shape[2])) |
|
return mask |
|
|
|
def apply(self, sample): |
|
""" |
|
Args: |
|
sample (dict): Input sample. |
|
|
|
Returns: |
|
dict: Decoded sample. |
|
""" |
|
if 'image' in sample: |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
if 'image_t1' in sample and not 'image' in sample: |
|
if not ('image_t2' in sample and 'image2' not in sample): |
|
raise ValueError |
|
sample['image'] = self.apply_im(sample['image_t1']) |
|
sample['image2'] = self.apply_im(sample['image_t2']) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask']) |
|
im_height, im_width, _ = sample['image'].shape |
|
se_height, se_width = sample['mask'].shape |
|
if im_height != se_height or im_width != se_width: |
|
raise ValueError( |
|
"The height or width of the image is not same as the mask.") |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(self.apply_mask, sample['aux_masks'])) |
|
# TODO: check the shape of auxiliary masks |
|
|
|
sample['im_shape'] = np.array( |
|
sample['image'].shape[:2], dtype=np.float32) |
|
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) |
|
return sample |
|
|
|
|
|
class Compose(Transform): |
|
""" |
|
Apply a series of data augmentation to the input. |
|
All input images are in Height-Width-Channel ([H, W, C]) format. |
|
|
|
Args: |
|
transforms (list[paddlers.transforms.Transform]): List of data preprocess or augmentations. |
|
Raises: |
|
TypeError: Invalid type of transforms. |
|
ValueError: Invalid length of transforms. |
|
""" |
|
|
|
def __init__(self, transforms, to_uint8=True): |
|
super(Compose, self).__init__() |
|
if not isinstance(transforms, list): |
|
raise TypeError( |
|
'Type of transforms is invalid. Must be a list, but received is {}' |
|
.format(type(transforms))) |
|
if len(transforms) < 1: |
|
raise ValueError( |
|
'Length of transforms must not be less than 1, but received is {}' |
|
.format(len(transforms))) |
|
self.transforms = transforms |
|
self.decode_image = DecodeImg(to_uint8=to_uint8) |
|
self.arrange_outputs = None |
|
self.apply_im_only = False |
|
|
|
def __call__(self, sample): |
|
if self.apply_im_only: |
|
if 'mask' in sample: |
|
mask_backup = copy.deepcopy(sample['mask']) |
|
del sample['mask'] |
|
if 'aux_masks' in sample: |
|
aux_masks = copy.deepcopy(sample['aux_masks']) |
|
|
|
sample = self.decode_image(sample) |
|
|
|
for op in self.transforms: |
|
# skip batch transforms amd mixup |
|
if isinstance(op, (paddlers.transforms.BatchRandomResize, |
|
paddlers.transforms.BatchRandomResizeByShort, |
|
MixupImage)): |
|
continue |
|
sample = op(sample) |
|
|
|
if self.arrange_outputs is not None: |
|
if self.apply_im_only: |
|
sample['mask'] = mask_backup |
|
if 'aux_masks' in locals(): |
|
sample['aux_masks'] = aux_masks |
|
sample = self.arrange_outputs(sample) |
|
|
|
return sample |
|
|
|
|
|
class Resize(Transform): |
|
""" |
|
Resize input. |
|
|
|
- If target_size is an int, resize the image(s) to (target_size, target_size). |
|
- If target_size is a list or tuple, resize the image(s) to target_size. |
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. |
|
|
|
Args: |
|
target_size (int, list[int] | tuple[int]): Target size. If int, the height and width share the same target_size. |
|
Otherwise, target_size represents [target height, target width]. |
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): |
|
Interpolation method of resize. Defaults to 'LINEAR'. |
|
keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater |
|
than target width/height. Defaults to False. |
|
|
|
Raises: |
|
TypeError: Invalid type of target_size. |
|
ValueError: Invalid interpolation method. |
|
""" |
|
|
|
def __init__(self, target_size, interp='LINEAR', keep_ratio=False): |
|
super(Resize, self).__init__() |
|
if not (interp == "RANDOM" or interp in interp_dict): |
|
raise ValueError("interp should be one of {}".format( |
|
interp_dict.keys())) |
|
if isinstance(target_size, int): |
|
target_size = (target_size, target_size) |
|
else: |
|
if not (isinstance(target_size, |
|
(list, tuple)) and len(target_size) == 2): |
|
raise TypeError( |
|
"target_size should be an int or a list of length 2, but received {}". |
|
format(target_size)) |
|
# (height, width) |
|
self.target_size = target_size |
|
self.interp = interp |
|
self.keep_ratio = keep_ratio |
|
|
|
def apply_im(self, image, interp, target_size): |
|
flag = image.shape[2] == 1 |
|
image = cv2.resize(image, target_size, interpolation=interp) |
|
if flag: |
|
image = image[:, :, np.newaxis] |
|
return image |
|
|
|
def apply_mask(self, mask, target_size): |
|
mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST) |
|
return mask |
|
|
|
def apply_bbox(self, bbox, scale, target_size): |
|
im_scale_x, im_scale_y = scale |
|
bbox[:, 0::2] *= im_scale_x |
|
bbox[:, 1::2] *= im_scale_y |
|
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0]) |
|
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1]) |
|
return bbox |
|
|
|
def apply_segm(self, segms, im_size, scale): |
|
im_h, im_w = im_size |
|
im_scale_x, im_scale_y = scale |
|
resized_segms = [] |
|
for segm in segms: |
|
if is_poly(segm): |
|
# Polygon format |
|
resized_segms.append([ |
|
resize_poly(poly, im_scale_x, im_scale_y) for poly in segm |
|
]) |
|
else: |
|
# RLE format |
|
resized_segms.append( |
|
resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y)) |
|
|
|
return resized_segms |
|
|
|
def apply(self, sample): |
|
if self.interp == "RANDOM": |
|
interp = random.choice(list(interp_dict.values())) |
|
else: |
|
interp = interp_dict[self.interp] |
|
im_h, im_w = sample['image'].shape[:2] |
|
|
|
im_scale_y = self.target_size[0] / im_h |
|
im_scale_x = self.target_size[1] / im_w |
|
target_size = (self.target_size[1], self.target_size[0]) |
|
if self.keep_ratio: |
|
scale = min(im_scale_y, im_scale_x) |
|
target_w = int(round(im_w * scale)) |
|
target_h = int(round(im_h * scale)) |
|
target_size = (target_w, target_h) |
|
im_scale_y = target_h / im_h |
|
im_scale_x = target_w / im_w |
|
|
|
sample['image'] = self.apply_im(sample['image'], interp, target_size) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2'], interp, |
|
target_size) |
|
|
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask'], target_size) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(partial( |
|
self.apply_mask, target_size=target_size), |
|
sample['aux_masks'])) |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = self.apply_bbox( |
|
sample['gt_bbox'], [im_scale_x, im_scale_y], target_size) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
sample['gt_poly'] = self.apply_segm( |
|
sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y]) |
|
sample['im_shape'] = np.asarray( |
|
sample['image'].shape[:2], dtype=np.float32) |
|
if 'scale_factor' in sample: |
|
scale_factor = sample['scale_factor'] |
|
sample['scale_factor'] = np.asarray( |
|
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], |
|
dtype=np.float32) |
|
return sample |
|
|
|
|
|
class RandomResize(Transform): |
|
""" |
|
Resize input to random sizes. |
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. |
|
|
|
Args: |
|
target_sizes (list[int] | list[list | tuple] | tuple[list | tuple]): |
|
Multiple target sizes, each target size is an int or list/tuple. |
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): |
|
Interpolation method of resize. Defaults to 'LINEAR'. |
|
|
|
Raises: |
|
TypeError: Invalid type of target_size. |
|
ValueError: Invalid interpolation method. |
|
|
|
See Also: |
|
Resize input to a specific size. |
|
""" |
|
|
|
def __init__(self, target_sizes, interp='LINEAR'): |
|
super(RandomResize, self).__init__() |
|
if not (interp == "RANDOM" or interp in interp_dict): |
|
raise ValueError("interp should be one of {}".format( |
|
interp_dict.keys())) |
|
self.interp = interp |
|
assert isinstance(target_sizes, list), \ |
|
"target_size must be a list." |
|
for i, item in enumerate(target_sizes): |
|
if isinstance(item, int): |
|
target_sizes[i] = (item, item) |
|
self.target_size = target_sizes |
|
|
|
def apply(self, sample): |
|
height, width = random.choice(self.target_size) |
|
resizer = Resize((height, width), interp=self.interp) |
|
sample = resizer(sample) |
|
|
|
return sample |
|
|
|
|
|
class ResizeByShort(Transform): |
|
""" |
|
Resize input with keeping the aspect ratio. |
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. |
|
|
|
Args: |
|
short_size (int): Target size of the shorter side of the image(s). |
|
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1. |
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'. |
|
|
|
Raises: |
|
ValueError: Invalid interpolation method. |
|
""" |
|
|
|
def __init__(self, short_size=256, max_size=-1, interp='LINEAR'): |
|
if not (interp == "RANDOM" or interp in interp_dict): |
|
raise ValueError("interp should be one of {}".format( |
|
interp_dict.keys())) |
|
super(ResizeByShort, self).__init__() |
|
self.short_size = short_size |
|
self.max_size = max_size |
|
self.interp = interp |
|
|
|
def apply(self, sample): |
|
im_h, im_w = sample['image'].shape[:2] |
|
im_short_size = min(im_h, im_w) |
|
im_long_size = max(im_h, im_w) |
|
scale = float(self.short_size) / float(im_short_size) |
|
if 0 < self.max_size < np.round(scale * im_long_size): |
|
scale = float(self.max_size) / float(im_long_size) |
|
target_w = int(round(im_w * scale)) |
|
target_h = int(round(im_h * scale)) |
|
sample = Resize( |
|
target_size=(target_h, target_w), interp=self.interp)(sample) |
|
|
|
return sample |
|
|
|
|
|
class RandomResizeByShort(Transform): |
|
""" |
|
Resize input to random sizes with keeping the aspect ratio. |
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly. |
|
|
|
Args: |
|
short_sizes (list[int]): Target size of the shorter side of the image(s). |
|
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1. |
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'. |
|
|
|
Raises: |
|
TypeError: Invalid type of target_size. |
|
ValueError: Invalid interpolation method. |
|
|
|
See Also: |
|
ResizeByShort: Resize image(s) in input with keeping the aspect ratio. |
|
""" |
|
|
|
def __init__(self, short_sizes, max_size=-1, interp='LINEAR'): |
|
super(RandomResizeByShort, self).__init__() |
|
if not (interp == "RANDOM" or interp in interp_dict): |
|
raise ValueError("interp should be one of {}".format( |
|
interp_dict.keys())) |
|
self.interp = interp |
|
assert isinstance(short_sizes, list), \ |
|
"short_sizes must be a list." |
|
|
|
self.short_sizes = short_sizes |
|
self.max_size = max_size |
|
|
|
def apply(self, sample): |
|
short_size = random.choice(self.short_sizes) |
|
resizer = ResizeByShort( |
|
short_size=short_size, max_size=self.max_size, interp=self.interp) |
|
sample = resizer(sample) |
|
return sample |
|
|
|
|
|
class ResizeByLong(Transform): |
|
def __init__(self, long_size=256, interp='LINEAR'): |
|
super(ResizeByLong, self).__init__() |
|
self.long_size = long_size |
|
self.interp = interp |
|
|
|
def apply(self, sample): |
|
im_h, im_w = sample['image'].shape[:2] |
|
im_long_size = max(im_h, im_w) |
|
scale = float(self.long_size) / float(im_long_size) |
|
target_h = int(round(im_h * scale)) |
|
target_w = int(round(im_w * scale)) |
|
sample = Resize( |
|
target_size=(target_h, target_w), interp=self.interp)(sample) |
|
|
|
return sample |
|
|
|
|
|
class RandomFlipOrRotate(Transform): |
|
""" |
|
Flip or Rotate an image in different ways with a certain probability. |
|
|
|
Args: |
|
probs (list of float): Probabilities of flipping and rotation. Default: [0.35,0.25]. |
|
probsf (list of float): Probabilities of 5 flipping mode |
|
(horizontal, vertical, both horizontal diction and vertical, diagonal, anti-diagonal). |
|
Default: [0.3, 0.3, 0.2, 0.1, 0.1]. |
|
probsr (list of float): Probabilities of 3 rotation mode(90°, 180°, 270° clockwise). Default: [0.25,0.5,0.25]. |
|
|
|
Examples: |
|
|
|
from paddlers import transforms as T |
|
|
|
# 定义数据增强 |
|
train_transforms = T.Compose([ |
|
T.RandomFlipOrRotate( |
|
probs = [0.3, 0.2] # 进行flip增强的概率是0.3,进行rotate增强的概率是0.2,不变的概率是0.5 |
|
probsf = [0.3, 0.25, 0, 0, 0] # flip增强时,使用水平flip、垂直flip的概率分别是0.3、0.25,水平且垂直flip、对角线flip、反对角线flip概率均为0,不变的概率是0.45 |
|
probsr = [0, 0.65, 0]), # rotate增强时,顺时针旋转90度的概率是0,顺时针旋转180度的概率是0.65,顺时针旋转90度的概率是0,不变的概率是0.35 |
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
""" |
|
|
|
def __init__(self, |
|
probs=[0.35, 0.25], |
|
probsf=[0.3, 0.3, 0.2, 0.1, 0.1], |
|
probsr=[0.25, 0.5, 0.25]): |
|
super(RandomFlipOrRotate, self).__init__() |
|
# Change various probabilities into probability intervals, to judge in which mode to flip or rotate |
|
self.probs = [probs[0], probs[0] + probs[1]] |
|
self.probsf = self.get_probs_range(probsf) |
|
self.probsr = self.get_probs_range(probsr) |
|
|
|
def apply_im(self, image, mode_id, flip_mode=True): |
|
if flip_mode: |
|
image = img_flip(image, mode_id) |
|
else: |
|
image = img_simple_rotate(image, mode_id) |
|
return image |
|
|
|
def apply_mask(self, mask, mode_id, flip_mode=True): |
|
if flip_mode: |
|
mask = img_flip(mask, mode_id) |
|
else: |
|
mask = img_simple_rotate(mask, mode_id) |
|
return mask |
|
|
|
def apply_bbox(self, bbox, mode_id, flip_mode=True): |
|
raise TypeError( |
|
"Currently, `paddlers.transforms.RandomFlipOrRotate` is not available for object detection tasks." |
|
) |
|
|
|
def apply_segm(self, bbox, mode_id, flip_mode=True): |
|
raise TypeError( |
|
"Currently, `paddlers.transforms.RandomFlipOrRotate` is not available for object detection tasks." |
|
) |
|
|
|
def get_probs_range(self, probs): |
|
''' |
|
Change various probabilities into cumulative probabilities |
|
|
|
Args: |
|
probs(list of float): probabilities of different mode, shape:[n] |
|
|
|
Returns: |
|
probability intervals(list of binary list): shape:[n, 2] |
|
''' |
|
ps = [] |
|
last_prob = 0 |
|
for prob in probs: |
|
p_s = last_prob |
|
cur_prob = prob / sum(probs) |
|
last_prob += cur_prob |
|
p_e = last_prob |
|
ps.append([p_s, p_e]) |
|
return ps |
|
|
|
def judge_probs_range(self, p, probs): |
|
''' |
|
Judge whether a probability value falls within the given probability interval |
|
|
|
Args: |
|
p(float): probability |
|
probs(list of binary list): probability intervals, shape:[n, 2] |
|
|
|
Returns: |
|
mode id(int):the probability interval number where the input probability falls, |
|
if return -1, the image will remain as it is and will not be processed |
|
''' |
|
for id, id_range in enumerate(probs): |
|
if p > id_range[0] and p < id_range[1]: |
|
return id |
|
return -1 |
|
|
|
def apply(self, sample): |
|
p_m = random.random() |
|
if p_m < self.probs[0]: |
|
mode_p = random.random() |
|
mode_id = self.judge_probs_range(mode_p, self.probsf) |
|
sample['image'] = self.apply_im(sample['image'], mode_id, True) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2'], mode_id, |
|
True) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask'], mode_id, True) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = [ |
|
self.apply_mask(aux_mask, mode_id, True) |
|
for aux_mask in sample['aux_masks'] |
|
] |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], mode_id, |
|
True) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], mode_id, |
|
True) |
|
elif p_m < self.probs[1]: |
|
mode_p = random.random() |
|
mode_id = self.judge_probs_range(mode_p, self.probsr) |
|
sample['image'] = self.apply_im(sample['image'], mode_id, False) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2'], mode_id, |
|
False) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask'], mode_id, False) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = [ |
|
self.apply_mask(aux_mask, mode_id, False) |
|
for aux_mask in sample['aux_masks'] |
|
] |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], mode_id, |
|
False) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], mode_id, |
|
False) |
|
|
|
return sample |
|
|
|
|
|
class RandomHorizontalFlip(Transform): |
|
""" |
|
Randomly flip the input horizontally. |
|
|
|
Args: |
|
prob(float, optional): Probability of flipping the input. Defaults to .5. |
|
""" |
|
|
|
def __init__(self, prob=0.5): |
|
super(RandomHorizontalFlip, self).__init__() |
|
self.prob = prob |
|
|
|
def apply_im(self, image): |
|
image = horizontal_flip(image) |
|
return image |
|
|
|
def apply_mask(self, mask): |
|
mask = horizontal_flip(mask) |
|
return mask |
|
|
|
def apply_bbox(self, bbox, width): |
|
oldx1 = bbox[:, 0].copy() |
|
oldx2 = bbox[:, 2].copy() |
|
bbox[:, 0] = width - oldx2 |
|
bbox[:, 2] = width - oldx1 |
|
return bbox |
|
|
|
def apply_segm(self, segms, height, width): |
|
flipped_segms = [] |
|
for segm in segms: |
|
if is_poly(segm): |
|
# Polygon format |
|
flipped_segms.append( |
|
[horizontal_flip_poly(poly, width) for poly in segm]) |
|
else: |
|
# RLE format |
|
flipped_segms.append(horizontal_flip_rle(segm, height, width)) |
|
return flipped_segms |
|
|
|
def apply(self, sample): |
|
if random.random() < self.prob: |
|
im_h, im_w = sample['image'].shape[:2] |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask']) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(self.apply_mask, sample['aux_masks'])) |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h, |
|
im_w) |
|
return sample |
|
|
|
|
|
class RandomVerticalFlip(Transform): |
|
""" |
|
Randomly flip the input vertically. |
|
|
|
Args: |
|
prob(float, optional): Probability of flipping the input. Defaults to .5. |
|
""" |
|
|
|
def __init__(self, prob=0.5): |
|
super(RandomVerticalFlip, self).__init__() |
|
self.prob = prob |
|
|
|
def apply_im(self, image): |
|
image = vertical_flip(image) |
|
return image |
|
|
|
def apply_mask(self, mask): |
|
mask = vertical_flip(mask) |
|
return mask |
|
|
|
def apply_bbox(self, bbox, height): |
|
oldy1 = bbox[:, 1].copy() |
|
oldy2 = bbox[:, 3].copy() |
|
bbox[:, 0] = height - oldy2 |
|
bbox[:, 2] = height - oldy1 |
|
return bbox |
|
|
|
def apply_segm(self, segms, height, width): |
|
flipped_segms = [] |
|
for segm in segms: |
|
if is_poly(segm): |
|
# Polygon format |
|
flipped_segms.append( |
|
[vertical_flip_poly(poly, height) for poly in segm]) |
|
else: |
|
# RLE format |
|
flipped_segms.append(vertical_flip_rle(segm, height, width)) |
|
return flipped_segms |
|
|
|
def apply(self, sample): |
|
if random.random() < self.prob: |
|
im_h, im_w = sample['image'].shape[:2] |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask']) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(self.apply_mask, sample['aux_masks'])) |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h, |
|
im_w) |
|
return sample |
|
|
|
|
|
class Normalize(Transform): |
|
""" |
|
Apply normalization to the input image(s). The normalization steps are: |
|
1. im = (im - min_value) * 1 / (max_value - min_value) |
|
2. im = im - mean |
|
3. im = im / std |
|
|
|
Args: |
|
mean(list[float] | tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406]. |
|
std(list[float] | tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225]. |
|
min_val(list[float] | tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ]. |
|
max_val(list[float] | tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.]. |
|
""" |
|
|
|
def __init__(self, |
|
mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225], |
|
min_val=None, |
|
max_val=None): |
|
super(Normalize, self).__init__() |
|
channel = len(mean) |
|
if min_val is None: |
|
min_val = [0] * channel |
|
if max_val is None: |
|
max_val = [255.] * channel |
|
|
|
from functools import reduce |
|
if reduce(lambda x, y: x * y, std) == 0: |
|
raise ValueError( |
|
'Std should not contain 0, but received is {}.'.format(std)) |
|
if reduce(lambda x, y: x * y, |
|
[a - b for a, b in zip(max_val, min_val)]) == 0: |
|
raise ValueError( |
|
'(max_val - min_val) should not contain 0, but received is {}.'. |
|
format((np.asarray(max_val) - np.asarray(min_val)).tolist())) |
|
|
|
self.mean = mean |
|
self.std = std |
|
self.min_val = min_val |
|
self.max_val = max_val |
|
|
|
def apply_im(self, image): |
|
image = image.astype(np.float32) |
|
mean = np.asarray( |
|
self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :] |
|
std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :] |
|
image = normalize(image, mean, std, self.min_val, self.max_val) |
|
return image |
|
|
|
def apply(self, sample): |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
|
|
return sample |
|
|
|
|
|
class CenterCrop(Transform): |
|
""" |
|
Crop the input at the center. |
|
1. Locate the center of the image. |
|
2. Crop the sample. |
|
|
|
Args: |
|
crop_size(int, optional): target size of the cropped image(s). Defaults to 224. |
|
""" |
|
|
|
def __init__(self, crop_size=224): |
|
super(CenterCrop, self).__init__() |
|
self.crop_size = crop_size |
|
|
|
def apply_im(self, image): |
|
image = center_crop(image, self.crop_size) |
|
|
|
return image |
|
|
|
def apply_mask(self, mask): |
|
mask = center_crop(mask, self.crop_size) |
|
return mask |
|
|
|
def apply(self, sample): |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask']) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(self.apply_mask, sample['aux_masks'])) |
|
return sample |
|
|
|
|
|
class RandomCrop(Transform): |
|
""" |
|
Randomly crop the input. |
|
1. Compute the height and width of cropped area according to aspect_ratio and scaling. |
|
2. Locate the upper left corner of cropped area randomly. |
|
3. Crop the image(s). |
|
4. Resize the cropped area to crop_size by crop_size. |
|
|
|
Args: |
|
crop_size(int, list[int] | tuple[int]): Target size of the cropped area. If None, the cropped area will not be |
|
resized. Defaults to None. |
|
aspect_ratio (list[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.]. |
|
thresholds (list[float], optional): Iou thresholds to decide a valid bbox crop. |
|
Defaults to [.0, .1, .3, .5, .7, .9]. |
|
scaling (list[float], optional): Ratio between the cropped region and the original image in [min, max] format. |
|
Defaults to [.3, 1.]. |
|
num_attempts (int, optional): The number of tries before giving up. Defaults to 50. |
|
allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True. |
|
cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False. |
|
""" |
|
|
|
def __init__(self, |
|
crop_size=None, |
|
aspect_ratio=[.5, 2.], |
|
thresholds=[.0, .1, .3, .5, .7, .9], |
|
scaling=[.3, 1.], |
|
num_attempts=50, |
|
allow_no_crop=True, |
|
cover_all_box=False): |
|
super(RandomCrop, self).__init__() |
|
self.crop_size = crop_size |
|
self.aspect_ratio = aspect_ratio |
|
self.thresholds = thresholds |
|
self.scaling = scaling |
|
self.num_attempts = num_attempts |
|
self.allow_no_crop = allow_no_crop |
|
self.cover_all_box = cover_all_box |
|
|
|
def _generate_crop_info(self, sample): |
|
im_h, im_w = sample['image'].shape[:2] |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
thresholds = self.thresholds |
|
if self.allow_no_crop: |
|
thresholds.append('no_crop') |
|
np.random.shuffle(thresholds) |
|
for thresh in thresholds: |
|
if thresh == 'no_crop': |
|
return None |
|
for i in range(self.num_attempts): |
|
crop_box = self._get_crop_box(im_h, im_w) |
|
if crop_box is None: |
|
continue |
|
iou = self._iou_matrix( |
|
sample['gt_bbox'], |
|
np.array( |
|
[crop_box], dtype=np.float32)) |
|
if iou.max() < thresh: |
|
continue |
|
if self.cover_all_box and iou.min() < thresh: |
|
continue |
|
cropped_box, valid_ids = self._crop_box_with_center_constraint( |
|
sample['gt_bbox'], np.array( |
|
crop_box, dtype=np.float32)) |
|
if valid_ids.size > 0: |
|
return crop_box, cropped_box, valid_ids |
|
else: |
|
for i in range(self.num_attempts): |
|
crop_box = self._get_crop_box(im_h, im_w) |
|
if crop_box is None: |
|
continue |
|
return crop_box, None, None |
|
return None |
|
|
|
def _get_crop_box(self, im_h, im_w): |
|
scale = np.random.uniform(*self.scaling) |
|
if self.aspect_ratio is not None: |
|
min_ar, max_ar = self.aspect_ratio |
|
aspect_ratio = np.random.uniform( |
|
max(min_ar, scale**2), min(max_ar, scale**-2)) |
|
h_scale = scale / np.sqrt(aspect_ratio) |
|
w_scale = scale * np.sqrt(aspect_ratio) |
|
else: |
|
h_scale = np.random.uniform(*self.scaling) |
|
w_scale = np.random.uniform(*self.scaling) |
|
crop_h = im_h * h_scale |
|
crop_w = im_w * w_scale |
|
if self.aspect_ratio is None: |
|
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0: |
|
return None |
|
crop_h = int(crop_h) |
|
crop_w = int(crop_w) |
|
crop_y = np.random.randint(0, im_h - crop_h) |
|
crop_x = np.random.randint(0, im_w - crop_w) |
|
return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h] |
|
|
|
def _iou_matrix(self, a, b): |
|
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) |
|
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) |
|
|
|
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2) |
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) |
|
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) |
|
area_o = (area_a[:, np.newaxis] + area_b - area_i) |
|
return area_i / (area_o + 1e-10) |
|
|
|
def _crop_box_with_center_constraint(self, box, crop): |
|
cropped_box = box.copy() |
|
|
|
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2]) |
|
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:]) |
|
cropped_box[:, :2] -= crop[:2] |
|
cropped_box[:, 2:] -= crop[:2] |
|
|
|
centers = (box[:, :2] + box[:, 2:]) / 2 |
|
valid = np.logical_and(crop[:2] <= centers, |
|
centers < crop[2:]).all(axis=1) |
|
valid = np.logical_and( |
|
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1)) |
|
|
|
return cropped_box, np.where(valid)[0] |
|
|
|
def _crop_segm(self, segms, valid_ids, crop, height, width): |
|
crop_segms = [] |
|
for id in valid_ids: |
|
segm = segms[id] |
|
if is_poly(segm): |
|
# Polygon format |
|
crop_segms.append(crop_poly(segm, crop)) |
|
else: |
|
# RLE format |
|
crop_segms.append(crop_rle(segm, crop, height, width)) |
|
|
|
return crop_segms |
|
|
|
def apply_im(self, image, crop): |
|
x1, y1, x2, y2 = crop |
|
return image[y1:y2, x1:x2, :] |
|
|
|
def apply_mask(self, mask, crop): |
|
x1, y1, x2, y2 = crop |
|
return mask[y1:y2, x1:x2, ...] |
|
|
|
def apply(self, sample): |
|
crop_info = self._generate_crop_info(sample) |
|
if crop_info is not None: |
|
crop_box, cropped_box, valid_ids = crop_info |
|
im_h, im_w = sample['image'].shape[:2] |
|
sample['image'] = self.apply_im(sample['image'], crop_box) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2'], crop_box) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
crop_polys = self._crop_segm( |
|
sample['gt_poly'], |
|
valid_ids, |
|
np.array( |
|
crop_box, dtype=np.int64), |
|
im_h, |
|
im_w) |
|
if [] in crop_polys: |
|
delete_id = list() |
|
valid_polys = list() |
|
for idx, poly in enumerate(crop_polys): |
|
if not crop_poly: |
|
delete_id.append(idx) |
|
else: |
|
valid_polys.append(poly) |
|
valid_ids = np.delete(valid_ids, delete_id) |
|
if not valid_polys: |
|
return sample |
|
sample['gt_poly'] = valid_polys |
|
else: |
|
sample['gt_poly'] = crop_polys |
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0) |
|
sample['gt_class'] = np.take( |
|
sample['gt_class'], valid_ids, axis=0) |
|
if 'gt_score' in sample: |
|
sample['gt_score'] = np.take( |
|
sample['gt_score'], valid_ids, axis=0) |
|
if 'is_crowd' in sample: |
|
sample['is_crowd'] = np.take( |
|
sample['is_crowd'], valid_ids, axis=0) |
|
|
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask'], crop_box) |
|
|
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(partial( |
|
self.apply_mask, crop=crop_box), |
|
sample['aux_masks'])) |
|
|
|
if self.crop_size is not None: |
|
sample = Resize(self.crop_size)(sample) |
|
|
|
return sample |
|
|
|
|
|
class RandomScaleAspect(Transform): |
|
""" |
|
Crop input image(s) and resize back to original sizes. |
|
Args: |
|
min_scale (float): Minimum ratio between the cropped region and the original image. |
|
If 0, image(s) will not be cropped. Defaults to .5. |
|
aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33. |
|
""" |
|
|
|
def __init__(self, min_scale=0.5, aspect_ratio=0.33): |
|
super(RandomScaleAspect, self).__init__() |
|
self.min_scale = min_scale |
|
self.aspect_ratio = aspect_ratio |
|
|
|
def apply(self, sample): |
|
if self.min_scale != 0 and self.aspect_ratio != 0: |
|
img_height, img_width = sample['image'].shape[:2] |
|
sample = RandomCrop( |
|
crop_size=(img_height, img_width), |
|
aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio], |
|
scaling=[self.min_scale, 1.], |
|
num_attempts=10, |
|
allow_no_crop=False)(sample) |
|
return sample |
|
|
|
|
|
class RandomExpand(Transform): |
|
""" |
|
Randomly expand the input by padding according to random offsets. |
|
|
|
Args: |
|
upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4.. |
|
prob(float, optional): The probability of apply expanding. Defaults to .5. |
|
im_padding_value(list[float] | tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5). |
|
label_padding_value(int, optional): Filling value for the mask. Defaults to 255. |
|
|
|
See Also: |
|
paddlers.transforms.Pad |
|
""" |
|
|
|
def __init__(self, |
|
upper_ratio=4., |
|
prob=.5, |
|
im_padding_value=127.5, |
|
label_padding_value=255): |
|
super(RandomExpand, self).__init__() |
|
assert upper_ratio > 1.01, "expand ratio must be larger than 1.01" |
|
self.upper_ratio = upper_ratio |
|
self.prob = prob |
|
assert isinstance(im_padding_value, (Number, Sequence)), \ |
|
"fill value must be either float or sequence" |
|
self.im_padding_value = im_padding_value |
|
self.label_padding_value = label_padding_value |
|
|
|
def apply(self, sample): |
|
if random.random() < self.prob: |
|
im_h, im_w = sample['image'].shape[:2] |
|
ratio = np.random.uniform(1., self.upper_ratio) |
|
h = int(im_h * ratio) |
|
w = int(im_w * ratio) |
|
if h > im_h and w > im_w: |
|
y = np.random.randint(0, h - im_h) |
|
x = np.random.randint(0, w - im_w) |
|
target_size = (h, w) |
|
offsets = (x, y) |
|
sample = Pad( |
|
target_size=target_size, |
|
pad_mode=-1, |
|
offsets=offsets, |
|
im_padding_value=self.im_padding_value, |
|
label_padding_value=self.label_padding_value)(sample) |
|
return sample |
|
|
|
|
|
class Pad(Transform): |
|
def __init__(self, |
|
target_size=None, |
|
pad_mode=0, |
|
offsets=None, |
|
im_padding_value=127.5, |
|
label_padding_value=255, |
|
size_divisor=32): |
|
""" |
|
Pad image to a specified size or multiple of size_divisor. |
|
|
|
Args: |
|
target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None. |
|
pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets |
|
if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0. |
|
im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5). |
|
label_padding_value(int, optional): Filling value for the mask. Defaults to 255. |
|
size_divisor(int): Image width and height after padding is a multiple of coarsest_stride. |
|
""" |
|
super(Pad, self).__init__() |
|
if isinstance(target_size, (list, tuple)): |
|
if len(target_size) != 2: |
|
raise ValueError( |
|
'`target_size` should include 2 elements, but it is {}'. |
|
format(target_size)) |
|
if isinstance(target_size, int): |
|
target_size = [target_size] * 2 |
|
|
|
assert pad_mode in [ |
|
-1, 0, 1, 2 |
|
], 'currently only supports four modes [-1, 0, 1, 2]' |
|
if pad_mode == -1: |
|
assert offsets, 'if pad_mode is -1, offsets should not be None' |
|
|
|
self.target_size = target_size |
|
self.size_divisor = size_divisor |
|
self.pad_mode = pad_mode |
|
self.offsets = offsets |
|
self.im_padding_value = im_padding_value |
|
self.label_padding_value = label_padding_value |
|
|
|
def apply_im(self, image, offsets, target_size): |
|
x, y = offsets |
|
h, w = target_size |
|
im_h, im_w, channel = image.shape[:3] |
|
canvas = np.ones((h, w, channel), dtype=np.float32) |
|
canvas *= np.array(self.im_padding_value, dtype=np.float32) |
|
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32) |
|
return canvas |
|
|
|
def apply_mask(self, mask, offsets, target_size): |
|
x, y = offsets |
|
im_h, im_w = mask.shape[:2] |
|
h, w = target_size |
|
canvas = np.ones((h, w), dtype=np.float32) |
|
canvas *= np.array(self.label_padding_value, dtype=np.float32) |
|
canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32) |
|
return canvas |
|
|
|
def apply_bbox(self, bbox, offsets): |
|
return bbox + np.array(offsets * 2, dtype=np.float32) |
|
|
|
def apply_segm(self, segms, offsets, im_size, size): |
|
x, y = offsets |
|
height, width = im_size |
|
h, w = size |
|
expanded_segms = [] |
|
for segm in segms: |
|
if is_poly(segm): |
|
# Polygon format |
|
expanded_segms.append( |
|
[expand_poly(poly, x, y) for poly in segm]) |
|
else: |
|
# RLE format |
|
expanded_segms.append( |
|
expand_rle(segm, x, y, height, width, h, w)) |
|
return expanded_segms |
|
|
|
def apply(self, sample): |
|
im_h, im_w = sample['image'].shape[:2] |
|
if self.target_size: |
|
h, w = self.target_size |
|
assert ( |
|
im_h <= h and im_w <= w |
|
), 'target size ({}, {}) cannot be less than image size ({}, {})'\ |
|
.format(h, w, im_h, im_w) |
|
else: |
|
h = (np.ceil(im_h / self.size_divisor) * |
|
self.size_divisor).astype(int) |
|
w = (np.ceil(im_w / self.size_divisor) * |
|
self.size_divisor).astype(int) |
|
|
|
if h == im_h and w == im_w: |
|
return sample |
|
|
|
if self.pad_mode == -1: |
|
offsets = self.offsets |
|
elif self.pad_mode == 0: |
|
offsets = [0, 0] |
|
elif self.pad_mode == 1: |
|
offsets = [(w - im_w) // 2, (h - im_h) // 2] |
|
else: |
|
offsets = [w - im_w, h - im_h] |
|
|
|
sample['image'] = self.apply_im(sample['image'], offsets, (h, w)) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2'], offsets, (h, w)) |
|
if 'mask' in sample: |
|
sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w)) |
|
if 'aux_masks' in sample: |
|
sample['aux_masks'] = list( |
|
map(partial( |
|
self.apply_mask, offsets=offsets, target_size=(h, w)), |
|
sample['aux_masks'])) |
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: |
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets) |
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0: |
|
sample['gt_poly'] = self.apply_segm( |
|
sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w]) |
|
return sample |
|
|
|
|
|
class MixupImage(Transform): |
|
def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1): |
|
""" |
|
Mixup two images and their gt_bbbox/gt_score. |
|
|
|
Args: |
|
alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5. |
|
beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5. |
|
""" |
|
super(MixupImage, self).__init__() |
|
if alpha <= 0.0: |
|
raise ValueError("alpha should be positive in {}".format(self)) |
|
if beta <= 0.0: |
|
raise ValueError("beta should be positive in {}".format(self)) |
|
self.alpha = alpha |
|
self.beta = beta |
|
self.mixup_epoch = mixup_epoch |
|
|
|
def apply_im(self, image1, image2, factor): |
|
h = max(image1.shape[0], image2.shape[0]) |
|
w = max(image1.shape[1], image2.shape[1]) |
|
img = np.zeros((h, w, image1.shape[2]), 'float32') |
|
img[:image1.shape[0], :image1.shape[1], :] = \ |
|
image1.astype('float32') * factor |
|
img[:image2.shape[0], :image2.shape[1], :] += \ |
|
image2.astype('float32') * (1.0 - factor) |
|
return img.astype('uint8') |
|
|
|
def __call__(self, sample): |
|
if not isinstance(sample, Sequence): |
|
return sample |
|
|
|
assert len(sample) == 2, 'mixup need two samples' |
|
|
|
factor = np.random.beta(self.alpha, self.beta) |
|
factor = max(0.0, min(1.0, factor)) |
|
if factor >= 1.0: |
|
return sample[0] |
|
if factor <= 0.0: |
|
return sample[1] |
|
image = self.apply_im(sample[0]['image'], sample[1]['image'], factor) |
|
result = copy.deepcopy(sample[0]) |
|
result['image'] = image |
|
# apply bbox and score |
|
if 'gt_bbox' in sample[0]: |
|
gt_bbox1 = sample[0]['gt_bbox'] |
|
gt_bbox2 = sample[1]['gt_bbox'] |
|
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) |
|
result['gt_bbox'] = gt_bbox |
|
if 'gt_poly' in sample[0]: |
|
gt_poly1 = sample[0]['gt_poly'] |
|
gt_poly2 = sample[1]['gt_poly'] |
|
gt_poly = gt_poly1 + gt_poly2 |
|
result['gt_poly'] = gt_poly |
|
if 'gt_class' in sample[0]: |
|
gt_class1 = sample[0]['gt_class'] |
|
gt_class2 = sample[1]['gt_class'] |
|
gt_class = np.concatenate((gt_class1, gt_class2), axis=0) |
|
result['gt_class'] = gt_class |
|
|
|
gt_score1 = np.ones_like(sample[0]['gt_class']) |
|
gt_score2 = np.ones_like(sample[1]['gt_class']) |
|
gt_score = np.concatenate( |
|
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) |
|
result['gt_score'] = gt_score |
|
if 'is_crowd' in sample[0]: |
|
is_crowd1 = sample[0]['is_crowd'] |
|
is_crowd2 = sample[1]['is_crowd'] |
|
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) |
|
result['is_crowd'] = is_crowd |
|
if 'difficult' in sample[0]: |
|
is_difficult1 = sample[0]['difficult'] |
|
is_difficult2 = sample[1]['difficult'] |
|
is_difficult = np.concatenate( |
|
(is_difficult1, is_difficult2), axis=0) |
|
result['difficult'] = is_difficult |
|
|
|
return result |
|
|
|
|
|
class RandomDistort(Transform): |
|
""" |
|
Random color distortion. |
|
|
|
Args: |
|
brightness_range(float, optional): Range of brightness distortion. Defaults to .5. |
|
brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5. |
|
contrast_range(float, optional): Range of contrast distortion. Defaults to .5. |
|
contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5. |
|
saturation_range(float, optional): Range of saturation distortion. Defaults to .5. |
|
saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5. |
|
hue_range(float, optional): Range of hue distortion. Defaults to .5. |
|
hue_prob(float, optional): Probability of hue distortion. Defaults to .5. |
|
random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD) |
|
order. Defaults to True. |
|
count (int, optional): the number of doing distortion. Defaults to 4. |
|
shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False. |
|
""" |
|
|
|
def __init__(self, |
|
brightness_range=0.5, |
|
brightness_prob=0.5, |
|
contrast_range=0.5, |
|
contrast_prob=0.5, |
|
saturation_range=0.5, |
|
saturation_prob=0.5, |
|
hue_range=18, |
|
hue_prob=0.5, |
|
random_apply=True, |
|
count=4, |
|
shuffle_channel=False): |
|
super(RandomDistort, self).__init__() |
|
self.brightness_range = [1 - brightness_range, 1 + brightness_range] |
|
self.brightness_prob = brightness_prob |
|
self.contrast_range = [1 - contrast_range, 1 + contrast_range] |
|
self.contrast_prob = contrast_prob |
|
self.saturation_range = [1 - saturation_range, 1 + saturation_range] |
|
self.saturation_prob = saturation_prob |
|
self.hue_range = [1 - hue_range, 1 + hue_range] |
|
self.hue_prob = hue_prob |
|
self.random_apply = random_apply |
|
self.count = count |
|
self.shuffle_channel = shuffle_channel |
|
|
|
def apply_hue(self, image): |
|
low, high = self.hue_range |
|
if np.random.uniform(0., 1.) < self.hue_prob: |
|
return image |
|
|
|
# it works, but result differ from HSV version |
|
delta = np.random.uniform(low, high) |
|
u = np.cos(delta * np.pi) |
|
w = np.sin(delta * np.pi) |
|
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]]) |
|
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321], |
|
[0.211, -0.523, 0.311]]) |
|
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647], |
|
[1.0, -1.107, 1.705]]) |
|
t = np.dot(np.dot(ityiq, bt), tyiq).T |
|
|
|
res_list = [] |
|
channel = image.shape[2] |
|
for i in range(channel // 3): |
|
sub_img = image[:, :, 3 * i:3 * (i + 1)] |
|
sub_img = sub_img.astype(np.float32) |
|
sub_img = np.dot(image, t) |
|
res_list.append(sub_img) |
|
|
|
if channel % 3 != 0: |
|
i = channel % 3 |
|
res_list.append(image[:, :, -i:]) |
|
|
|
return np.concatenate(res_list, axis=2) |
|
|
|
def apply_saturation(self, image): |
|
low, high = self.saturation_range |
|
delta = np.random.uniform(low, high) |
|
if np.random.uniform(0., 1.) < self.saturation_prob: |
|
return image |
|
|
|
res_list = [] |
|
channel = image.shape[2] |
|
for i in range(channel // 3): |
|
sub_img = image[:, :, 3 * i:3 * (i + 1)] |
|
sub_img = sub_img.astype(np.float32) |
|
# it works, but result differ from HSV version |
|
gray = sub_img * np.array( |
|
[[[0.299, 0.587, 0.114]]], dtype=np.float32) |
|
gray = gray.sum(axis=2, keepdims=True) |
|
gray *= (1.0 - delta) |
|
sub_img *= delta |
|
sub_img += gray |
|
res_list.append(sub_img) |
|
|
|
if channel % 3 != 0: |
|
i = channel % 3 |
|
res_list.append(image[:, :, -i:]) |
|
|
|
return np.concatenate(res_list, axis=2) |
|
|
|
def apply_contrast(self, image): |
|
low, high = self.contrast_range |
|
if np.random.uniform(0., 1.) < self.contrast_prob: |
|
return image |
|
delta = np.random.uniform(low, high) |
|
image = image.astype(np.float32) |
|
image *= delta |
|
return image |
|
|
|
def apply_brightness(self, image): |
|
low, high = self.brightness_range |
|
if np.random.uniform(0., 1.) < self.brightness_prob: |
|
return image |
|
delta = np.random.uniform(low, high) |
|
image = image.astype(np.float32) |
|
image += delta |
|
return image |
|
|
|
def apply(self, sample): |
|
if self.random_apply: |
|
functions = [ |
|
self.apply_brightness, self.apply_contrast, |
|
self.apply_saturation, self.apply_hue |
|
] |
|
distortions = np.random.permutation(functions)[:self.count] |
|
for func in distortions: |
|
sample['image'] = func(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = func(sample['image2']) |
|
return sample |
|
|
|
sample['image'] = self.apply_brightness(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_brightness(sample['image2']) |
|
mode = np.random.randint(0, 2) |
|
if mode: |
|
sample['image'] = self.apply_contrast(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_contrast(sample['image2']) |
|
sample['image'] = self.apply_saturation(sample['image']) |
|
sample['image'] = self.apply_hue(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_saturation(sample['image2']) |
|
sample['image2'] = self.apply_hue(sample['image2']) |
|
if not mode: |
|
sample['image'] = self.apply_contrast(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_contrast(sample['image2']) |
|
|
|
if self.shuffle_channel: |
|
if np.random.randint(0, 2): |
|
sample['image'] = sample['image'][..., np.random.permutation(3)] |
|
if 'image2' in sample: |
|
sample['image2'] = sample['image2'][ |
|
..., np.random.permutation(3)] |
|
return sample |
|
|
|
|
|
class RandomBlur(Transform): |
|
""" |
|
Randomly blur input image(s). |
|
|
|
Args: |
|
prob (float): Probability of blurring. |
|
""" |
|
|
|
def __init__(self, prob=0.1): |
|
super(RandomBlur, self).__init__() |
|
self.prob = prob |
|
|
|
def apply_im(self, image, radius): |
|
image = cv2.GaussianBlur(image, (radius, radius), 0, 0) |
|
return image |
|
|
|
def apply(self, sample): |
|
if self.prob <= 0: |
|
n = 0 |
|
elif self.prob >= 1: |
|
n = 1 |
|
else: |
|
n = int(1.0 / self.prob) |
|
if n > 0: |
|
if np.random.randint(0, n) == 0: |
|
radius = np.random.randint(3, 10) |
|
if radius % 2 != 1: |
|
radius = radius + 1 |
|
if radius > 9: |
|
radius = 9 |
|
sample['image'] = self.apply_im(sample['image'], radius) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2'], radius) |
|
return sample |
|
|
|
|
|
class Dehaze(Transform): |
|
""" |
|
Dehaze input image(s). |
|
|
|
Args: |
|
gamma (bool, optional): Use gamma correction or not. Defaults to False. |
|
""" |
|
|
|
def __init__(self, gamma=False): |
|
super(Dehaze, self).__init__() |
|
self.gamma = gamma |
|
|
|
def apply_im(self, image): |
|
image = dehaze(image, self.gamma) |
|
return image |
|
|
|
def apply(self, sample): |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
return sample |
|
|
|
|
|
class ReduceDim(Transform): |
|
""" |
|
Use PCA to reduce the dimension of input image(s). |
|
|
|
Args: |
|
joblib_path (str): Path of *.joblib file of PCA. |
|
""" |
|
|
|
def __init__(self, joblib_path): |
|
super(ReduceDim, self).__init__() |
|
ext = joblib_path.split(".")[-1] |
|
if ext != "joblib": |
|
raise ValueError("`joblib_path` must be *.joblib, not *.{}.".format( |
|
ext)) |
|
self.pca = load(joblib_path) |
|
|
|
def apply_im(self, image): |
|
H, W, C = image.shape |
|
n_im = np.reshape(image, (-1, C)) |
|
im_pca = self.pca.transform(n_im) |
|
result = np.reshape(im_pca, (H, W, -1)) |
|
return result |
|
|
|
def apply(self, sample): |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
return sample |
|
|
|
|
|
class SelectBand(Transform): |
|
""" |
|
Select a set of bands of input image(s). |
|
|
|
Args: |
|
band_list (list, optional): Bands to select (the band index starts with 1). Defaults to [1, 2, 3]. |
|
""" |
|
|
|
def __init__(self, band_list=[1, 2, 3]): |
|
super(SelectBand, self).__init__() |
|
self.band_list = band_list |
|
|
|
def apply_im(self, image): |
|
image = select_bands(image, self.band_list) |
|
return image |
|
|
|
def apply(self, sample): |
|
sample['image'] = self.apply_im(sample['image']) |
|
if 'image2' in sample: |
|
sample['image2'] = self.apply_im(sample['image2']) |
|
return sample |
|
|
|
|
|
class _PadBox(Transform): |
|
def __init__(self, num_max_boxes=50): |
|
""" |
|
Pad zeros to bboxes if number of bboxes is less than num_max_boxes. |
|
|
|
Args: |
|
num_max_boxes (int, optional): the max number of bboxes. Defaults to 50. |
|
""" |
|
self.num_max_boxes = num_max_boxes |
|
super(_PadBox, self).__init__() |
|
|
|
def apply(self, sample): |
|
gt_num = min(self.num_max_boxes, len(sample['gt_bbox'])) |
|
num_max = self.num_max_boxes |
|
pad_bbox = np.zeros((num_max, 4), dtype=np.float32) |
|
if gt_num > 0: |
|
pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :] |
|
sample['gt_bbox'] = pad_bbox |
|
if 'gt_class' in sample: |
|
pad_class = np.zeros((num_max, ), dtype=np.int32) |
|
if gt_num > 0: |
|
pad_class[:gt_num] = sample['gt_class'][:gt_num, 0] |
|
sample['gt_class'] = pad_class |
|
if 'gt_score' in sample: |
|
pad_score = np.zeros((num_max, ), dtype=np.float32) |
|
if gt_num > 0: |
|
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0] |
|
sample['gt_score'] = pad_score |
|
# in training, for example in op ExpandImage, |
|
# the bbox and gt_class is expanded, but the difficult is not, |
|
# so, judging by it's length |
|
if 'difficult' in sample: |
|
pad_diff = np.zeros((num_max, ), dtype=np.int32) |
|
if gt_num > 0: |
|
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0] |
|
sample['difficult'] = pad_diff |
|
if 'is_crowd' in sample: |
|
pad_crowd = np.zeros((num_max, ), dtype=np.int32) |
|
if gt_num > 0: |
|
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0] |
|
sample['is_crowd'] = pad_crowd |
|
return sample |
|
|
|
|
|
class _NormalizeBox(Transform): |
|
def __init__(self): |
|
super(_NormalizeBox, self).__init__() |
|
|
|
def apply(self, sample): |
|
height, width = sample['image'].shape[:2] |
|
for i in range(sample['gt_bbox'].shape[0]): |
|
sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width |
|
sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height |
|
sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width |
|
sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height |
|
|
|
return sample |
|
|
|
|
|
class _BboxXYXY2XYWH(Transform): |
|
""" |
|
Convert bbox XYXY format to XYWH format. |
|
""" |
|
|
|
def __init__(self): |
|
super(_BboxXYXY2XYWH, self).__init__() |
|
|
|
def apply(self, sample): |
|
bbox = sample['gt_bbox'] |
|
bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2] |
|
bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2. |
|
sample['gt_bbox'] = bbox |
|
return sample |
|
|
|
|
|
class _Permute(Transform): |
|
def __init__(self): |
|
super(_Permute, self).__init__() |
|
|
|
def apply(self, sample): |
|
sample['image'] = permute(sample['image'], False) |
|
if 'image2' in sample: |
|
sample['image2'] = permute(sample['image2'], False) |
|
return sample |
|
|
|
|
|
class RandomSwap(Transform): |
|
""" |
|
Randomly swap multi-temporal images. |
|
|
|
Args: |
|
prob (float, optional): Probability of swapping the input images. Default: 0.2. |
|
""" |
|
|
|
def __init__(self, prob=0.2): |
|
super(RandomSwap, self).__init__() |
|
self.prob = prob |
|
|
|
def apply(self, sample): |
|
if 'image2' not in sample: |
|
raise ValueError('image2 is not found in the sample.') |
|
if random.random() < self.prob: |
|
sample['image'], sample['image2'] = sample['image2'], sample[ |
|
'image'] |
|
return sample |
|
|
|
|
|
class ArrangeSegmenter(Transform): |
|
def __init__(self, mode): |
|
super(ArrangeSegmenter, self).__init__() |
|
if mode not in ['train', 'eval', 'test', 'quant']: |
|
raise ValueError( |
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!" |
|
) |
|
self.mode = mode |
|
|
|
def apply(self, sample): |
|
if 'mask' in sample: |
|
mask = sample['mask'] |
|
|
|
image = permute(sample['image'], False) |
|
if self.mode == 'train': |
|
mask = mask.astype('int64') |
|
return image, mask |
|
if self.mode == 'eval': |
|
mask = np.asarray(Image.open(mask)) |
|
mask = mask[np.newaxis, :, :].astype('int64') |
|
return image, mask |
|
if self.mode == 'test': |
|
return image, |
|
|
|
|
|
class ArrangeChangeDetector(Transform): |
|
def __init__(self, mode): |
|
super(ArrangeChangeDetector, self).__init__() |
|
if mode not in ['train', 'eval', 'test', 'quant']: |
|
raise ValueError( |
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!" |
|
) |
|
self.mode = mode |
|
|
|
def apply(self, sample): |
|
if 'mask' in sample: |
|
mask = sample['mask'] |
|
|
|
image_t1 = permute(sample['image'], False) |
|
image_t2 = permute(sample['image2'], False) |
|
if self.mode == 'train': |
|
mask = mask.astype('int64') |
|
masks = [mask] |
|
if 'aux_masks' in sample: |
|
masks.extend( |
|
map(methodcaller('astype', 'int64'), sample['aux_masks'])) |
|
return ( |
|
image_t1, |
|
image_t2, ) + tuple(masks) |
|
if self.mode == 'eval': |
|
mask = np.asarray(Image.open(mask)) |
|
mask = mask[np.newaxis, :, :].astype('int64') |
|
return image_t1, image_t2, mask |
|
if self.mode == 'test': |
|
return image_t1, image_t2, |
|
|
|
|
|
class ArrangeClassifier(Transform): |
|
def __init__(self, mode): |
|
super(ArrangeClassifier, self).__init__() |
|
if mode not in ['train', 'eval', 'test', 'quant']: |
|
raise ValueError( |
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!" |
|
) |
|
self.mode = mode |
|
|
|
def apply(self, sample): |
|
image = permute(sample['image'], False) |
|
if self.mode in ['train', 'eval']: |
|
return image, sample['label'] |
|
else: |
|
return image |
|
|
|
|
|
class ArrangeDetector(Transform): |
|
def __init__(self, mode): |
|
super(ArrangeDetector, self).__init__() |
|
if mode not in ['train', 'eval', 'test', 'quant']: |
|
raise ValueError( |
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!" |
|
) |
|
self.mode = mode |
|
|
|
def apply(self, sample): |
|
if self.mode == 'eval' and 'gt_poly' in sample: |
|
del sample['gt_poly'] |
|
return sample
|
|
|