You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

375 lines
13 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/PeizeSun/SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py
Ths copyright of PeizeSun/SparseR-CNN is as follows:
MIT License [see LICENSE for details]
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import copy
import paddle
import paddle.nn as nn
from paddlers.models.ppdet.core.workspace import register
from paddlers.models.ppdet.modeling.heads.roi_extractor import RoIAlign
from paddlers.models.ppdet.modeling.bbox_utils import delta2bbox
from .. import initializer as init
_DEFAULT_SCALE_CLAMP = math.log(100000. / 16)
class DynamicConv(nn.Layer):
def __init__(
self,
head_hidden_dim,
head_dim_dynamic,
head_num_dynamic, ):
super().__init__()
self.hidden_dim = head_hidden_dim
self.dim_dynamic = head_dim_dynamic
self.num_dynamic = head_num_dynamic
self.num_params = self.hidden_dim * self.dim_dynamic
self.dynamic_layer = nn.Linear(self.hidden_dim,
self.num_dynamic * self.num_params)
self.norm1 = nn.LayerNorm(self.dim_dynamic)
self.norm2 = nn.LayerNorm(self.hidden_dim)
self.activation = nn.ReLU()
pooler_resolution = 7
num_output = self.hidden_dim * pooler_resolution**2
self.out_layer = nn.Linear(num_output, self.hidden_dim)
self.norm3 = nn.LayerNorm(self.hidden_dim)
def forward(self, pro_features, roi_features):
'''
pro_features: (1, N * nr_boxes, self.d_model)
roi_features: (49, N * nr_boxes, self.d_model)
'''
features = roi_features.transpose(perm=[1, 0, 2])
parameters = self.dynamic_layer(pro_features).transpose(perm=[1, 0, 2])
param1 = parameters[:, :, :self.num_params].reshape(
[-1, self.hidden_dim, self.dim_dynamic])
param2 = parameters[:, :, self.num_params:].reshape(
[-1, self.dim_dynamic, self.hidden_dim])
features = paddle.bmm(features, param1)
features = self.norm1(features)
features = self.activation(features)
features = paddle.bmm(features, param2)
features = self.norm2(features)
features = self.activation(features)
features = features.flatten(1)
features = self.out_layer(features)
features = self.norm3(features)
features = self.activation(features)
return features
class RCNNHead(nn.Layer):
def __init__(
self,
d_model,
num_classes,
dim_feedforward,
nhead,
dropout,
head_cls,
head_reg,
head_dim_dynamic,
head_num_dynamic,
scale_clamp: float=_DEFAULT_SCALE_CLAMP,
bbox_weights=(2.0, 2.0, 1.0, 1.0), ):
super().__init__()
self.d_model = d_model
# dynamic.
self.self_attn = nn.MultiHeadAttention(d_model, nhead, dropout=dropout)
self.inst_interact = DynamicConv(d_model, head_dim_dynamic,
head_num_dynamic)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = nn.ReLU()
# cls.
num_cls = head_cls
cls_module = list()
for _ in range(num_cls):
cls_module.append(nn.Linear(d_model, d_model, bias_attr=False))
cls_module.append(nn.LayerNorm(d_model))
cls_module.append(nn.ReLU())
self.cls_module = nn.LayerList(cls_module)
# reg.
num_reg = head_reg
reg_module = list()
for _ in range(num_reg):
reg_module.append(nn.Linear(d_model, d_model, bias_attr=False))
reg_module.append(nn.LayerNorm(d_model))
reg_module.append(nn.ReLU())
self.reg_module = nn.LayerList(reg_module)
# pred.
self.class_logits = nn.Linear(d_model, num_classes)
self.bboxes_delta = nn.Linear(d_model, 4)
self.scale_clamp = scale_clamp
self.bbox_weights = bbox_weights
def forward(self, features, bboxes, pro_features, pooler):
"""
:param bboxes: (N, nr_boxes, 4)
:param pro_features: (N, nr_boxes, d_model)
"""
N, nr_boxes = bboxes.shape[:2]
proposal_boxes = list()
for b in range(N):
proposal_boxes.append(bboxes[b])
roi_num = paddle.full([N], nr_boxes).astype("int32")
roi_features = pooler(features, proposal_boxes, roi_num)
roi_features = roi_features.reshape(
[N * nr_boxes, self.d_model, -1]).transpose(perm=[2, 0, 1])
# self_att.
pro_features = pro_features.reshape([N, nr_boxes, self.d_model])
pro_features2 = self.self_attn(
pro_features, pro_features, value=pro_features)
pro_features = pro_features.transpose(perm=[1, 0, 2]) + self.dropout1(
pro_features2.transpose(perm=[1, 0, 2]))
pro_features = self.norm1(pro_features)
# inst_interact.
pro_features = pro_features.reshape(
[nr_boxes, N, self.d_model]).transpose(perm=[1, 0, 2]).reshape(
[1, N * nr_boxes, self.d_model])
pro_features2 = self.inst_interact(pro_features, roi_features)
pro_features = pro_features + self.dropout2(pro_features2)
obj_features = self.norm2(pro_features)
# obj_feature.
obj_features2 = self.linear2(
self.dropout(self.activation(self.linear1(obj_features))))
obj_features = obj_features + self.dropout3(obj_features2)
obj_features = self.norm3(obj_features)
fc_feature = obj_features.transpose(perm=[1, 0, 2]).reshape(
[N * nr_boxes, -1])
cls_feature = fc_feature.clone()
reg_feature = fc_feature.clone()
for cls_layer in self.cls_module:
cls_feature = cls_layer(cls_feature)
for reg_layer in self.reg_module:
reg_feature = reg_layer(reg_feature)
class_logits = self.class_logits(cls_feature)
bboxes_deltas = self.bboxes_delta(reg_feature)
pred_bboxes = delta2bbox(bboxes_deltas,
bboxes.reshape([-1, 4]), self.bbox_weights)
return class_logits.reshape([N, nr_boxes, -1]), pred_bboxes.reshape(
[N, nr_boxes, -1]), obj_features
@register
class SparseRCNNHead(nn.Layer):
'''
SparsercnnHead
Args:
roi_input_shape (list[ShapeSpec]): The output shape of fpn
num_classes (int): Number of classes,
head_hidden_dim (int): The param of MultiHeadAttention,
head_dim_feedforward (int): The param of MultiHeadAttention,
nhead (int): The param of MultiHeadAttention,
head_dropout (float): The p of dropout,
head_cls (int): The number of class head,
head_reg (int): The number of regressionhead,
head_num_dynamic (int): The number of DynamicConv's param,
head_num_heads (int): The number of RCNNHead,
deep_supervision (int): wheather supervise the intermediate results,
num_proposals (int): the number of proposals boxes and features
'''
__inject__ = ['loss_func']
__shared__ = ['num_classes']
def __init__(
self,
head_hidden_dim,
head_dim_feedforward,
nhead,
head_dropout,
head_cls,
head_reg,
head_dim_dynamic,
head_num_dynamic,
head_num_heads,
deep_supervision,
num_proposals,
num_classes=80,
loss_func="SparseRCNNLoss",
roi_input_shape=None, ):
super().__init__()
# Build RoI.
box_pooler = self._init_box_pooler(roi_input_shape)
self.box_pooler = box_pooler
# Build heads.
rcnn_head = RCNNHead(
head_hidden_dim,
num_classes,
head_dim_feedforward,
nhead,
head_dropout,
head_cls,
head_reg,
head_dim_dynamic,
head_num_dynamic, )
self.head_series = nn.LayerList(
[copy.deepcopy(rcnn_head) for i in range(head_num_heads)])
self.return_intermediate = deep_supervision
self.num_classes = num_classes
# build init proposal
self.init_proposal_features = nn.Embedding(num_proposals,
head_hidden_dim)
self.init_proposal_boxes = nn.Embedding(num_proposals, 4)
self.lossfunc = loss_func
# Init parameters.
init.reset_initialized_parameter(self)
self._reset_parameters()
def _reset_parameters(self):
# init all parameters.
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
for m in self.sublayers():
if isinstance(m, nn.Linear):
init.xavier_normal_(m.weight, reverse=True)
elif not isinstance(m, nn.Embedding) and hasattr(
m, "weight") and m.weight.dim() > 1:
init.xavier_normal_(m.weight, reverse=False)
if hasattr(m, "bias") and m.bias is not None and m.bias.shape[
-1] == self.num_classes:
init.constant_(m.bias, bias_value)
init_bboxes = paddle.empty_like(self.init_proposal_boxes.weight)
init_bboxes[:, :2] = 0.5
init_bboxes[:, 2:] = 1.0
self.init_proposal_boxes.weight.set_value(init_bboxes)
@staticmethod
def _init_box_pooler(input_shape):
pooler_resolution = 7
sampling_ratio = 2
if input_shape is not None:
pooler_scales = tuple(1.0 / input_shape[k].stride
for k in range(len(input_shape)))
in_channels = [
input_shape[f].channels for f in range(len(input_shape))
]
end_level = len(input_shape) - 1
# Check all channel counts are equal
assert len(set(in_channels)) == 1, in_channels
else:
pooler_scales = [1.0 / 4.0, 1.0 / 8.0, 1.0 / 16.0, 1.0 / 32.0]
end_level = 3
box_pooler = RoIAlign(
resolution=pooler_resolution,
spatial_scale=pooler_scales,
sampling_ratio=sampling_ratio,
end_level=end_level,
aligned=True)
return box_pooler
def forward(self, features, input_whwh):
bs = len(features[0])
bboxes = box_cxcywh_to_xyxy(self.init_proposal_boxes.weight.clone(
)).unsqueeze(0)
bboxes = bboxes * input_whwh.unsqueeze(-2)
init_features = self.init_proposal_features.weight.unsqueeze(0).tile(
[1, bs, 1])
proposal_features = init_features.clone()
inter_class_logits = []
inter_pred_bboxes = []
for rcnn_head in self.head_series:
class_logits, pred_bboxes, proposal_features = rcnn_head(
features, bboxes, proposal_features, self.box_pooler)
if self.return_intermediate:
inter_class_logits.append(class_logits)
inter_pred_bboxes.append(pred_bboxes)
bboxes = pred_bboxes.detach()
output = {
'pred_logits': inter_class_logits[-1],
'pred_boxes': inter_pred_bboxes[-1]
}
if self.return_intermediate:
output['aux_outputs'] = [{
'pred_logits': a,
'pred_boxes': b
} for a, b in zip(inter_class_logits[:-1], inter_pred_bboxes[:-1])]
return output
def get_loss(self, outputs, targets):
losses = self.lossfunc(outputs, targets)
weight_dict = self.lossfunc.weight_dict
for k in losses.keys():
if k in weight_dict:
losses[k] *= weight_dict[k]
return losses
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return paddle.stack(b, axis=-1)